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1. Introduction 

Data envelopment analysis (DEA) was coined by Charnes, Cooper, and Rhodes (1978). 

Since its first publication in 1978, DEA has been developed and applied in many different areas, 

resulting in over 5,000 publications in the Web of Science database. For comprehensive reviews 

on DEA literature, interested readers are referred to Cook and Seiford (2009), Liu, Lu, Lu, and 

Lin (2013a;2013b), and Liu, Lu, and Lu (2016). 

As pointed by Cooper, Seiford, and Zhu (2004), the DEA literature has seen a great 

variety of applications in evaluating the performances of many different kinds of entities 

engaged in many different activities in many different contexts in many different countries. 

These DEA applications have used decision making units (DMUs) of various forms, such as 

hospitals, US Air Force wings, universities, cities, courts, business firms, countries, regions, etc. 

Because it requires very few assumptions, DEA has also opened up possibilities for use in cases 

which have been resistant to other approaches because of the complex (often unknown) nature of 

the relations between the multiple metrics labeled as inputs and outputs related to DMUs. 

 The focus of this paper is not on how great and versatile DEA has been, but rather on 

how DEA has been evolving. As big data research becomes an important area of Operations 

Analytics, DEA is evolving into Data Enabled Analytics. DEA can be viewed as a data-oriented 

data science tool for productivity analytics, benchmarking, performance evaluation, and 

composite index construction, among other new uses, in addition to the traditional uses such as, 

production efficiency and productivity measurement. Interestingly enough, Mahajan (1991) 

labeled DEA as “data envelopment analytics”. The DEA community has witnessed the linkage 

between DEA and data analytics. A number of journal special issues have focused on DEA and 

its uses as a data-oriented and/or data science tool. INFOR has dedicated two volumes to DEA 

and its applications in operations (Lim and Zhu, 2017, 2018). Chen, Lim, and Cook (2019) have 

edited a special issue for Annals of Operations Research on DEA and data analytics. Charles, 

Aparicio, and Zhu (2020a) are editing a special issue for the Journal of the Operational Research 

Society on big data for better productivity. Charles, Aparicio, and Zhu (2020b) are editing a book 

on data science and productivity analytics.  

 The rest of the paper is organized as follows. Section 2 briefly introduces the 

conventional DEA and discusses some basic well-known properties of the DEA models. The 

emphasis is on the use of DEA as a benchmarking tool. Section 3 links the network structures to 
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the big data concept and demonstrates that network DEA can derive insights and value from big 

data. Examples of network DEA in transportations and logistics are reviewed. It is also shown 

that network DEA is different from conventional DEA and may require the development and use 

of non-linear optimization techniques. Section 4 concludes. 

 

2. Data Envelopment Analysis (DEA) 

One often characterizes DEA as a tool for identifying best-practices when multiple performance 

metrics or measures are present for organizations. Although DEA has a strong link to production 

theory in economics, the tool is also used for benchmarking in operations management, where a 

set of measures is selected to benchmark the performance of manufacturing and service 

operations. In the circumstance of benchmarking, the efficient DMUs, as defined by DEA, may 

not necessarily form a "production frontier", but rather lead to a "best-practice frontier" (Cook, 

Tone, and Zhu, 2014). DEA can be a tool for constructing a composite index. For example, 

Shwartz, Burgess, and Zhu (2016) use an input only DEA model to develop a quality index for 

health care providers. Shen et al. (2012) develop a DEA based road safety model to measure the 

road safety risk. Chen et al. (2019) re-visit the global food security index by a hierarchical DEA. 

Let us look at the very first standard DEA, often called the CCR model or CRS (constant 

returns to scale) model. I will talk about the use of returns to scale (RTS) in DEA in section 2.1. 

This standard DEA model can be presented in either its envelopment or multiplier form. For 

example, the multiplier CRS model is developed based upon the concept of engineering ratio by 

(Charnes, Cooper, and Rhodes, 1978): 
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where 𝑥௜௝  and 𝑦௥௝ are observations on the inputs and outputs, respectively, and  𝑣௜  and 𝑢௥  are 

unknown (non-negative) weights to be determined. 
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While in the DEA literature, the maximum value of the above model (DEA score) is 

often called “efficiency”, in fact, the above model generates a composite index or measure, and 

“efficiency” does not necessarily mean “production efficiency” in many DEA applications. 

“Efficiency” is a standard terminology in DEA to represent the optimal value to the DEA model. 

Depending on the specific application, the DEA score can be a risk index, or a quality index, for 

example. 

 

2.1. Returns to scale (RTS) 

One of the best things happened to DEA is the linkage between DEA models to their economic 

meaning and foundations. This enables DEA to be used as a production function estimator. As a 

result, DEA models are often called by their frontier types, e.g., CRS or VRS (variable returns to 

scale). However, when DEA is not used to identify the production frontiers, RTS loses its 

economic meaning and merely indicates the shape of the best-practice frontier. For example, 

VRS simply means that the DEA model produces a tighter envelopment of the data than the CRS 

model does. It is well-known that VRS yields a better DEA score. However, such a conclusion 

may not be valid under the network DEA. Therefore, it is important to bear in mind that RTS 

only represents the shape of the best-practice frontier when DEA is not used to identify 

production functions. 

 

2.2. Convexity (and ratio data) 

It can be seen that the above (ratio) model (1) can include only inputs or only outputs. 

Therefore, the above model is not necessarily a model of “production” or “technology” in 

economics. Obviously, we can use ratio data (or mix of ratio and raw data) to define a new 

composite measure. Note that such a composite measure may not bear any economic meaning. 

The requirement of convexity in DEA is related to production function or technology in 

economics. To see this, let us convert the ratio model (1) into the following linear envelopment 

DEA model 

𝜃∗ ൌ 𝑚𝑖𝑛 𝜃 
subject to 

෍ 𝜆௝𝑥௜௝

௡

௝ୀଵ

൑ 𝜃𝑥௜௢       𝑖 ൌ 1,2, . . . , 𝑚; 
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෍ 𝜆௝𝑦௥௝

௡

௝ୀଵ

൒ 𝑦௥௢        𝑟 ൌ 1,2, . . . , 𝑠 

𝜆௝ ൒ 0                  𝑗 ൌ 1,2, . . . , 𝑛.      (2) 

In the above envelopment model, researchers discovered the “convexity” and established 

a link between DEA and the production function. Therefore, the economic meaning is justified if 

DEA is used as a tool for estimating production functions. As Olesen, Petersen, and Podinovski 

(2015) correctly point out, the use of the multiplier model along with ratio data is fine as long as 

we do not use DEA to estimate production functions. 

 

2.3. A brief survey on DEA in the past 10 years 

In the past 10 years or so, there are about 900 publications related to DEA. A significant amount 

of research is dedicated to (i) using DEA as a data-driven tool for descriptive analytics by 

gaining insight from historical data, and for prescriptive analytics by recommending decisions 

using DEA-based optimization and simulation, (ii) developing DEA models for studying 

network structures, and (iii) combining DEA with other data analysis tools. 

 DEA has been used as a predictive analytics tool that assists medical professionals to 

accurately predict best donor/recipient pairings in organ sharing programs. Misiunas et al. (2016) 

combine artificial neural networks (ANN) and DEA to develop a tool that results in accurate 

predictions and faster training time. Note that in their study, over 400 variables and 100,000 

observations exist in the United Network for Organ Sharing database. DEA plays a critical role 

in training the ANN and its accuracy in predication. 

 In the model development area, some noticeable contribution lies in the area of network 

DEA (e.g., Chen, 2009; Cook, Liang, and Zhu, 2010; Tone and Tsutsui, 2014; and Kao, 2014), 

hierarchical DEA Models (e.g., Kao, 2015), and non-homogeneous DEA models (e.g., Li et al., 

2016). In the next section, I will demonstrate that these network DEA models provide 

opportunities for DEA to be applied under the concept of big data. Note that the following three 

studies have already used network DEA and dynamic DEA under big data context. A double 

frontier network DEA approach is used by Badiezadeh, Saen, and Samavati (2018) to study the 

sustainability of supply chains. A dynamic DEA is used in evaluating the performance of power 

grid enterprises by Sun et al. (2017) and supply chains by Kahi et al. (2017). 
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 Another noticeable area is the combined use of DEA with other data analytics tools. For 

example, Lahdelma and Salminen (2006) introduce a method combining DEA with stochastic 

multicriteria acceptability analysis (SMAA) so that DEA can handle uncertain or imprecise data 

to provide stochastic efficiency measures. Afsharian (2019) incorporates DEA into a location 

analysis where facilities are managed by a central authority who wishes to improve the efficiency 

of the whole system rather than maximizing the individual ones. In a real-life case study of first-

tier automotive supplier, Ihrig et al. (2019) combine DEA and a resource allocation technique in 

setting productivity targets. 

Other new DEA-related research has also been developed in the area of productivity and 

benchmarking (see, e.g., Aparicio et al., 2017 and Cook et al., 2019). It is worthwhile to point 

out that Kuo and Kusiak (2019) show that production research enabled by data has shifted from 

analytical models to data-driven, and manufacturing and DEA have been the most popular 

application areas of data-driven methodologies. 

 In addition to the big data algorithms provided in Khezrimotlagh et al. (2019), Zhu et al. 

(2018) provide a hierarchical decomposition algorithm, and Chu, Wu, and Song (2018) develop 

procedures for environmental efficiency evaluation when the number of DMUs is massive.  

A topic search was conducted using the “advanced search” function on the Web of 

Science (WoS) database. A combination of keywords “big data” and “data envelopment 

analysis” yielded 29 studies. In addition, the combination of keywords “big data” and “DEA” 

yielded 30 studies. After compiling these results and excluding duplicates, the final number of 

complete studies totaled 38. The citation indexes in which these studies are covered include: 

Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), 

Arts & Humanities Citation Index (A&HCI), Conference Proceedings Citation Index- Science 

(CPCI-S), Conference Proceedings Citation Index- Social Science & Humanities (CPCI-SSH), 

and Emerging Sources Citation Index (ESCI). The timespan of the search is from January 1970 

to June 2019. A cleaning process was designated to remove papers that were present in the initial 

literature collection by means of the WoS topic search but are irrelevant to applying DEA in the 

context of big data, and this process has reduced our number of papers from 38 to 23. 

 A significant number of studies are carried out for environmental issues under the context 

of big data. Wu, Chen, and Xia (2018)) propose a DEA-based dynamic environmental 

performance evaluation model using real time big data. DEA is used to evaluate environmental 
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efficiency of China's regional industry by Chen and Jia (2017). Liu, Chu, Yin, and Sun (2017) 

use a cross efficiency DEA to study the eco-efficiency of coal-fired power plants in a big data 

environment. An et al. (2017) and Ji et al. (2017) set the carbon dioxide emission permits for 

each DMU. See Song et al. (2017, 2018) for a survey on environmental performance evaluation 

with big data. 

 The use of DEA for big data has also been adopted in supply chain performance 

evaluations. See, e.g., Badiezadeh, Saen, and Samavati (2018), Song and Wang (2017), and 

Herranz et al. (2017). Other applications include China’s forestry resources efficiency (Li, Hao, 

and Chi (2017), production performance in iron and steel enterprises (Gong et al. (2017), 

regional energy efficiency and resource allocation (Zhang et al (2017); Zhu et al. (2017)), 

transportation management (Chen et al. (2019)), and disaster recovery systemic innovations 

(Yang et al. (2015). 

 The above literature analysis indicates that DEA has evolved into a tool for big data 

analysis and a significant body of DEA research has focused on network DEA. In the section 

below, I will demonstrate how network DEA is related to the “value” dimension of big data. 

 

3. Data Enabled Analytics and Network DEA 

I think the discussion on what big data represents is still on-going. Often 3Vs (volume, variety 

and velocity) are called the three defining properties of big data. Under the context of DEA, the 

number of DMUs becomes the “volume”. Special algorithms are needed in order to process large 

amounts of DMUs in a short period of time. This is then related to the “velocity” aspect of big 

data. Fortunately, researchers in the DEA field have already begun to develop effective 

algorithms. Most recently, Khezrimotlagh et al. (2019) develop algorithms to handle large 

volumes of data (decision making units, inputs, and outputs) under conventional DEA. 

The “variety” dimension is reflected by the non-homogenous DMUs and different types 

of performance measures (or called inputs and outputs in DEA). While it is usually assumed in 

conventional DEA that DMUs under consideration must be homogenous, Cook et al (2013) show 

that DEA can be adopted for modeling non-homogenous DMUs. The issue of different types of 

performance measures boils down to whether a DEA model can deal with ordinal or scale data or 

mixtures of real data and scale data (see, e.g., Zhu (2003). The “variety” aspects can also lead to 

large amounts of performance measures being used by DEA. Charles, Aparicio and Zhu (2019) 
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develop simple techniques to reduce the number of DEA inputs and outputs. In the previous 

section, I have discussed that the types of the performance measures and frontiers are not limited 

to the situation when DEA is used to estimate production functions. 

It is now well known that “value” is another important dimension of big data and it sits at 

the top of the big data pyramid. The “value” aspect refers to the ability of transferring data into 

useful information. While conventional DEA already generates useful insights in helping 

business to improve their performance, for example, not all the operations and performance 

measures can be addressed in a single conventional DEA model.  Fortunately, in recent years, we 

have seen a significant development on network DEA where various (operational) processes are 

linked by a variety of performance measures. 

It is very straightforward that one can think of the inclusion of large quantities of DMUs 

when DEA is applied. However, a large number of DMUs in itself may not entirely reflect the 

big data concept. For example, a bank can only have a limited number of branches. A DEA 

analysis of all the bank branches would not characterize the information embedded in the big 

data. Of course, one can include more performance metrics. However, such an action may 

weaken the discriminatory power of DEA. 

 In this section, I will focus on how DEA, in particular, network DEA, can be used to deal 

with the “value” dimension of big data. Note that DEA or network DEA is a “ratio” based 

analysis”. Certainly, “ratio” analysis in general can be applied to big data. In contrast to the 

conventional DEA, this paper emphasizes that network DEA can extract “value” from big data 

that are presented in network structures, such as supply chain and logistics and transportation 

systems. Covering all these “Vs” in a one paper is of course infeasible. Therefore, in the current 

paper, we only emphasize some aspects of the “Vs”. 

Using airline operations as an example, a variety of data or performance metrics are 

available to be analyzed. A mixture of data, e.g., airline capacity and marketing data, in the 

traditional DEA may not clearly characterize the benchmarking purpose. For example, Figure 1 

illustrates a simple process depicting the airline operations where the “capacity” component 

determines the fleet sizes to generate revenues in the “operation” stage. The fleet sizes can reflect 

such measures as load factor defined as the percentage of available seats filled, available seat-

miles for passenger transport segment and available tone-miles for the freight transport segment. 

(see, e.g., Zhu (2011) and Kottas and Madas (2018).) 
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Figure 1. Airline Performance 

 

 A conventional DEA model can evaluate the performance of the capacity or operation 

stage. However, if we combine the performance metrics, whether the measures related to fleet 

sizes should be used as inputs or outputs is not clear. In fact, these performance metrics may 

represent “coordination” inbetween the two stages. For example, in a supplier and buyer supply 

chain, the “optimal” values of measures that link the two members are often determined via 

coordination between the supplier and the buyer. 

 While Figure 1 depicts a very simple two-stage operation, air carriers can be classified as 

combination carriers, fright-only carriers, and integrators (see, e.g., Kottas and Madas (2018)). 

The network shown in Figure 1 needs to be modified to reflect the three air transportation 

classifications and results in a more complicated network structure to better characterize the 

airline performance. In fact, Gan et al. (2019) present a hierarchical network structure related to 

an international shipping company in Taiwan. 
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Figure 2. Taiwan’s international shipping company  

Figure 2 shows the hierarchical network structure of this Taiwanese international shipping 

company. It is a two-stage network consisting of ship management stage and port management 

stage. Each stage has a hierarchical structure due to the sizes of the ships and capacity of the 

ports. Other network structures can be found in Cook et al. (1998), Cook and Green (2005), and 

Kao (1998, 2009, 2015), for example. 

If one examines the big data technique literature, one would find the usual techniques such 

as classification techniques (e.g., support vector machine), (deep) neural networks, clustering, 

and hierarchical learning. While standard DEA can be regarded as a “classification” or 

“clustering” technique, network DEA can provide additional insights or “value” if the evaluation 

or benchmarking issue itself needs to be characterized by multiple aspects or dimensions. For 

example, in a recent article by Summerfield et al. (2019), network DEA is used to study whether 

drivers should cooperate on simulated road networks. This is an important and valuable piece of 

information to the transportation department. 

Since transportation and logistics systems naturally consist of network systems, let us take a 

look at the DEA applications in this particular field. I should point out that while network DEA 

is developed for studying the internal structures of DMUs, its underlying applications are from 

supply chains, multi-stage production systems, and transportation systems (see, e.g., Liang et al. 

(2006) and Tone and Tsutsui, (2009)). 

In the past 20 years or so, there are more than 600 published papers using DEA in 

transportation and logistics system. The majority of them are using the basic DEA models. Given 
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the recent development in network DEA, a few studies have used the simple network DEA 

models. Therefore, let us focus on the period of 2014-2019. 

 The last column of Table 1 shows the total number of papers published in each year. The 

second and third columns show the number of papers that use conventional and network DEA, 

respectively. It can be seen that the majority the papers use conventional DEA and about 15% of 

the publications use the network DEA technique in each year (except for a 31% in 2016). This 

could indicate that the recent network DEA development takes time to be adopted. 

Table 2 provides detailed information on top 10 journals in which most of the DEA 

papers published. The majority of the application areas are air transportation, followed by sea 

transportation, and road, as indicated by Figure 3. 

 Table A.1 in Appendix A lists the measures used in various network DEA models for 

studying air transportation. It can be seen that the usual inputs are the number of employees, 

operating expenses, salaries and wages, materials cost, fleet sizes, and fuel costs. Typical 

intermediate measures include available seat kilometers (or miles), and revenue passenger 

kilometers. The outputs from the second stage usually include revenues. Depending on the goals 

of particular studies, some studies treat fleet size as an exogenous input which does not come 

from a previous stage, for example. Tables A.2 and A.3 list the measures in sea transportations 

and supply chain, respectively. 

 

Table 1. DEA Techniques used in publications 

Year conventional network Total 

2014 26 5 31 

2015 22 4 26 

2016 27 12 39 

2017 30 6 36 

2018 30 6 36 

2019 11 2 13 

 

 



13 
 

Table 2. Journals 

Journal 201
9 

201
8 

201
7 

201
6 

201
5 

201
4 

TOTA
L 

Journal of Air Transport Management 1 5 5 7 5 6 29 

Transportation Research Part A: Policy and Practice 2 6 6 4 4 5 27 

Transport Policy 3 4 5 6 2 1 21 

Transportation Research Part D: Transport and Environment  3 4 8 2 4 21 

Maritime Economics & Logistics 1 5 4  1 4 15 

Maritime Policy & Management 1 2 2 4 3  12 

Transportation Research Part E: Logistics and Transportation 
Review 1  1 3 4  9 

Journal of Advanced Transportation  2  2  2 6 

Journal of Transport Geography  1 2 1  2 6 
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Figure 3. Research Field Breakdown 

 

Finally, to demonstrate the network DEA model, let us consider a general two-stage 

network structure as shown in Figure 4. Each DMUj (j=1,2,…,n) has m inputs ijx >0, 

(i=1,2,…,m) to the first stage and P outputs 1
pjy  >0 (p=1,2,…,P) that leave the system. In 

addition to these P outputs, stage 1 has D intermediate outputs
djz > 0(d=1,2,…,D) that become 

inputs to the second stage. The second stage has as well, its own inputs 2
hjx > 0(h=1,2,…,H) that 

enter from outside the system. The outputs from the second stage are 
rjy > 0 (r=1, 2, …,s). Note 

in DEA it is assumed that all observations on these performance measures are non-negative. 
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Figure 4. General two-stage network structure 

Based upon the conventional DEA, the (performance) ratios or (indexes) of stages 1 and 2 

for a specific oDMU  under evaluation can be expressed as: 
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where iv , d , p , ru , and hQ  are weights which are assumed to be positive in the current study, by 

incorporating the small non-Archimedean ε into the DEA models. Note that the weights on the 

intermediate measures are assumed to be the same for stages 1 and 2, as in Kao and Hwang 

(2008) and Liang, Cook, and Zhu (2008). This is an important assumption that establishes a 

linkage between the two stages. 

Under (weighted) additive efficiency aggregation, we can define the overall performance 
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The corresponding network DEA model can be expressed as: 
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Note that although model (3) is constructed by using the DEA ratio similar to that in 

model (1), the resulting model (3) is a nonlinear and nonconvex optimization problem that 

cannot be converted into a linear model. Consequently, we do not have an equivalent of dual 

linear (envelopment) model. One has to build the “envelopment” network DEA model that is not 

related to the multiplier form (3). 

 While one can set a specific   so that model (3) can be converted into a linear program, 

such a technique introduces weight restrictions into the model (3) (see, e.g., Cook et al., 2010).  

Chen and Zhu (2017) and Chen, Cook, and Zhu (2009) develop second order cone programming 

(SOCP) and conic relaxation model to solve non-linear network DEA models. It generates, in a 

more convenient manner, feasible approximations and tighter upper bounds on the global 

optimal solution. Compared with a line-parameter search method that has been applied to solve 

non-linear network DEA models, the conic relaxation model keeps track of the distances 

between the optimal overall efficiency and its approximations. As a result, it is able to determine 

whether a qualified approximation has been achieved or not, with the help of a branch and bound 

algorithm. 

 Given the nonlinearity of the network DEA models, network DEA is already significantly 

different from conventional DEA from the computational perspective. This offers opportunities 

for the DEA community to develop and/or apply optimization techniques in solving these 

network DEA models. Both the SOCP of Chen and Zhu (2020) and Chen, Cook and Zhu (2020) 

and semi-definiteness programming of Halická and Trnovská (2018) are two possible useful 

tools for solving non-linear network DEA models and big data modeling under DEA. In my 

personal view, big data can be reflected in the (complex) network structures. As such, this offers 

both challenges and opportunities in applying network DEA to big data analysis. 

 

 Because there is no dual model to (3), a different line of network DEA research on 

envelopment form has been developed. Such envelopment-based models are based upon the 

production possibility set. See, e.g., Färe and Grosskopf (2000) and Tone and Tsutsui (2009). 

Färe and Grosskopf (2000) suggest that the production possibility set (PPS) of network 

system is the aggregation of PPS of individual divisions. Thus, based upon Tone and Tsutsui 

(2009) and Kao (2018), the PPS of the general two-stage network shown in Figure 3 can be 

defined as follows: 
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where ijx , 2
hjx , 1

pjy , and rjy  are exogenous variables which are visible to outsiders. Then, based on 

the PPS (4), we have the following after slacks are introduced: 
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Given that djz  are intermediate measures that link the two stages, we assume here that (Kao, 2018): 
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 Chen and Zhu (2020) develop the following envelopment form of the network DEA 

model: 
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 Unlike the envelopment models in Tone and Tsutsui (2009), model (7) is a non-linear 

model that can be solved via SOCP technique (see Chen and Zhu, 2020). 

 I should point out that in the existing DEA literature, proofs have never been provided 

that a model like (7), for example, actually yields the overall and divisional scores. In fact, Chen 

et al. (2013) point out that the overall and divisional scores generated by the multiplier and 

envelopment network DEA models do not correspond to each other. While the envelopment 
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model generates frontier projection points for inefficient units, the multiplier model is needed for 

overall and divisional scores. Interested readers are referred to Chen et al. (2013) for a list of 

network DEA pitfalls. 

 Note that the assumption of VRS (or the VRS shape of the frontier) is reflected on the 

convexity constraints of 1

1

1
n

j
j




  and 2

1

n

j
j



 =1. In other words, if we impose such a convexity 

constraint in the envelopment form, we assume VRS. In the multiplier form, VRS is reflected by 

a free variable which represents the y-intercept, depending on whether the optimal value of the 

free variable is positive, negative, or zero. Note also that when the network DEA models are not 

linear, there is no duality relationship between the convexity constraint and the free variable. As 

a result, whether the convexity condition assumes VRS shape of the frontier needs to be further 

studied. 

 In fact, as pointed out by Lim and Zhu (2019), the overall network DEA score under VRS 

is not smaller than that under CRS for all DMUs as is the case in the conventional DEA. 

However, some individual component scores under VRS are found to be smaller than the 

corresponding score under CRS, unlike the conventional DEA. 

In the conventional envelopment DEA, it is obvious that VRS scores are always greater than 

CRS scores due to the additional convexity constraint in the VRS model. The same holds true 

with the overall network DEA scores. The problematic situation, where the VRS scores are 

smaller than the CRS scores, happens only with divisional scores. This discovery indicates that 

network DEA cannot be viewed as a (simple) extension to the conventional DEA, although the 

network DEA model is based upon the ratios in the multiplier form or the PPS in the 

envelopment form. While the overall index in network DEA is built upon the assumption of VRS 

or CRS shape of the frontier, its divisional efficiency may not obey the CRS or VRS assumption. 

This is due to the lack of duality between the network DEA multiplier and envelopment models 

and the treatment of the intermediate measures that link the network components. 

Finally, note that in conventional DEA, there is always at least one DMU that is efficient or 

on the best-practice frontier. However, it is possible that none of the DMUs is overall efficient in 

network DEA. 
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4. Conclusions 

The goal of this paper is to explore the idea on how network DEA can be used in big data 

research. The focus is the value aspect of the big data reflected in network structures. Given the 

existing examples in transportation and logistics systems and other areas, the need for using 

network DEA to gain valuable information in data analytics is obvious. I demonstrate that 

network DEA can be different from conventional DEA in many aspects. In particular, techniques 

in solving non-linear programming problems will be very useful in network DEA computations. 

While there exist simple network DEA structures, consequently, one is able to convert the related 

network DEA models into linear programs. However, the dual to the linear multiplier network 

DEA does not resemble the envelopment DEA network models. This is obviously a topic for 

future research in network DEA when we study the multiplier and envelopment-based models. In 

general, we expect that the non-linear optimization techniques need to be developed for solving 

network DEA models under general network structures. 

Research built upon conventional DEA is also extremely important for big data research. 

Misiunas et al. (2016) is one example where basic conventional DEA can be used to assist 

decision making under big data. While Khezrimotlagh et al. (2019) offer algorithms to deal with 

large value of DEA data, Charles, Aparicio and Zhu (2019) develop simple techniques to reduce 

the number of DEA inputs and outputs. 

Under big data, any methodology has its limitation with respect to real time update. 

However, under DEA, if a new DMU (or a group of new DMUs) appears, one does not have to 

run the entire big data set. In DEA or network DEA, we only need to compare the new DMU(s) 

to the established or identified frontier. This is a much smaller data set and can be calculated 

quickly. Note that one challenge for DEA under big data is the quick identification of DMUs that 

are on the frontier. While the above methods can effectively address such a challenge, we need to 

look at the possibility of combining DEA or network DEA with typical data mining and machine 

learning techniques, for example random forest, support vector machine, and artificial neural 

networks, to expediate the process for identification of frontier DMUs. This is an important 

future research. 

From the very first DEA paper (Charnes et al., 1978), it is clear that DEA is a data-oriented 

technique. While conventional DEA is linear program based, network DEA can remain as a non-

linear and non-convex model. As a data-oriented technique, data will enable network DEA play 
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important roles in big data related researches. In addition to the top DEA application areas, such 

as, banking, health care, transportation, education, and agriculture, recent years have seen a 

significant amount of applications in environmental issues and sustainability research. While 

many of these applications are based upon conventional DEA, environmental and sustainability 

issues are by nature multifaceted that need to be categorized by social, environmental, and 

financial performances. Therefore, there is an opportunity to revisit these areas by network DEA. 
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Appendix A Network DEA Applications in Air Transportation, Sea Transportation, and Supply 

Chains 

 

Table A.1 Network DEA Measures in Air Transportation Studies 

Authors 
Original Inputs Final outputs 

Intermediate 
measures/links 

 Exogenous 
inputs 

Exogenous 
outputs 

Cui et al. 
(2018) 

 number of 
employees 

 tons of 
aviation 
kerosene 

 Total 
Revenue、
Greenhouse 
gases 
emission 

 Capital Stock   

Cui and Li 
(2018) 

 Operating 
Expenses 

 Total 
Revenue 

 Available Seat 
Kilometers (Link 
1-2) 

 Revenue 
Passenger 
Kilometers (Link 
2-3) 

 Fleet Size 
(stage 2) 

 Sales Costs 
(stage 3) 

 Greenhous
e Gases 
Emission 
(stage 2) 

Kottas and 
Madas 
(2018) 

 Number of 
Employees 

 Total 
Operating 
Costs 

 Number of 
Operated 
Aircraft 

 Total 
Operating 
Revenue 

 Revenue 
assenger-
Kilometers 
(RPKs 

 Revenue 
Tonne-
Kilometers 
(RTKs) 

 Available Seat-
Kilometers 
(ASKs) 

 Available Tonne-
Kilometers 
(ATKs) 

  

Storto 
(2018) 

 soft 
operating 
expenditures 

 labor cost 

 aviation 
revenues 

 non-aviation 
revenues 

 terminal size、
apron size、total 
area of 
runways、
employees (Link 
1-2)  

 movements、
passengers、
cargo (Link 2-3) 

  

Cui and Li 
(2017) 

 Number of 
employees 

 Aviation 
kerosene 

 Revenue 
tonne 
kilometers 

 Revenue 
passenger 
kilometers 

 Total 
revenue 

 Capital Stock 
(Carry-over) 

  

Cui et 
al.(2017) 

 Operating 
Expenses 

 Total 
Revenue 

 Available Seat 
Kilometers (Link 
1-2) 

 Revenue 
Passenger 
Kilometers (Link 
2-3) 

 Fleet Size 
(stage 2) 

 Sales Costs 
(stage 3) 

 Greenhous
e Gases 
Emission 
(stage 2) 

Liu (2017)  Runway 
area 

 passengers 
and cargo 

 aircraft 
movements 
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 Staff costs 
 Other 

operating 
costs 

 non-
aeronautical 
revenues 

Yu et al. 
(2017) 

 Size of 
leased fleet 

 Labor 
expenses 

 Fuel 
expenses 

 Other 
operational 
expenses 

 Revenue 
passenger 
kilometers 
(RPK) 

 Freight 
revenue ton 
kilometers 
(FRTK) 

 ASK、FATK 
(Link) 

 Size of self-
owned fleet、
Waypoints(Carry
-over) 

  

Chang et al. 
(2016) 

 Net asset 
 Material 

cost 
 Labor cost 

 Cargo 
 Enplanemen

t 

 PFC/AIP 
determined 
(Link ) 

 aircraft 
operations 
(Carry-over) 

 Promotion 
(stage 2) 

 Delay 
(stage 1) 

Chou et al. 
(2016) 

 Labor cost 
 Fuel cost 

(million 
US$) 

 Fleet size 

 Passenger 
kilometers 

 Available 
seatkilometers 
(Link ) 

 Net revenue、
Number of 
accidents (Carry-
over) 

  

Cui and Li 
(2016) 

 Salaries, 
Wages and 
Benefits , 
Fuel 
Expenses  
and Total 
Assets  

 Carbon 
Dioxide 
(CO2) 

 Estimated 
Carbon Dioxide 
(ECO2) 

 Abatement 
Expense (AE) 

 Revenue 
Passenger 
Kilometers 
(RPK), 
Revenue 
Tonne 
Kilometers 
(RTK) 

Cui et al. 
(2016) 

 Number of 
employees 
and Aviation 
Kerosene  

 Total 
Business 
Income  

 Available seat 
kilometres (ASK) 
and available 
tonne kilometres 
(ATK) (Link 1-2) 

 Revenue 
Passenger 
Kilometres 
(RPK) and 
Revenue Tonne 
Kilometres 
(RTK)(Link 2-3) 

 Fleet Size 
(stage 2) 

 Sales Costs 
(stage 3) 

 Greenhous
e Gases 
Emission 
(stage 2) 

Olfat et al. 
(2016) 

 Policy 
making 
based on 
sustainable 
developmen
t concept 

 Budget 

 Satisfaction 
 Pollutions 

levels 

 The number of 
takeoff and 
landing aircraft、
Social 
responsibility、
Service quality 
(Link 1-2) 

 Corporate 
reputation 
(Carry-over) 

  Non-
aviation 
income 
(stage 1) 

Omrani and 
Soltanzade
h (2016) 

 the number 
of 
employees 

 passenger-
kilometer 
performed 

 passenger 

 available seat-
kilometer, 
available ton-
kilometer, and 
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ton-
kilometer 
perfumed 
(Y2) 

number of 
scheduled flights 

 the number of 
fleet's seat 
(Carry-over) 

Shao and 
Sun (2016) 

 Flights 
related cost 

 Passenger 
throughput 

 Freight 
throughput 

 Available seats、
Available 
tonnage 

  

Li et al. 
(2015) 

 Number of 
employees 
and Aviation 
Kerosene  

 Total 
Business 
Income 
(TBI) 

 Available seat 
kilometres (ASK) 
and available 
tonne kilometres 
(ATK) (Link 1-2) 

 Revenue 
Passenger 
Kilometres 
(RPK) and 
Revenue Tonne 
Kilometres 
(RTK)(Link 2-3) 

 Fleet Size 
(stage 2) 

 Sales Costs 
(stage 3) 

 

Mallikarjun 
(2015) 

 operating 
expenses 

 operating 
revenue 

 available seat 
miles (Link 1-2) 

 revenue 
passenger miles 
(Link 2-3) 

 fleet Size、
destinations 
(stage 2) 

 

Chang and 
Yu (2014) 

 labor 
 capital 
 fuel 

consumptio
n 

 passenger 
miles 

 the number of 
destinations 

 Seat miles 

 Environmenta
l factor: 
adjusted GDP 
(stage 1&2) 

 

Lozano and 
Gutiérrez 

(2014) 

 fuel cost of 
airline 

 non-current 
assets of 
airline 

 wages and 
salaries of 
airline 

 other 
operating 
costs of 
airline 

 revenue 
passenger 
kilometres 
of airline 

 revenue 
tonne 
kilometres 
of airline 

 available seat 
kilometres of 
airline 

 available tonne 
kilometres of 
airline 

 selling costs 
of airline 

 

Tavassoli et 
al.  (2014) 

 Number of 
passenger 
planes 

 Labor 
 Number of 

cargo 
 planes 

 P-plane-km 
 C-plane-km 

 P-km  
 Ton-km  

/  
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Table A.2 Network DEA Measures in Sea Transportation Studies 

Authors Original Inputs Final outputs Intermediate measures  Exogenous inputs/links 

Chao et al. 
(2018) 

 Chartered-in fleet 
capacity 

 Revenue  Lifting 
 Owned fleet 

capacity (Carry-
over) 

 Expenses 
 Employees 

Chen and Lam 
(2018) 

 Terminal area 
 Berth length 
 Number of quay 

crane 

 GDP 
 CO2 emissions 

 Annual container 
throughput 

 Land area、
Energy 
consumption 

 Labor 
 Annual container 

throughput 

Chao (2017) 

 Owned fleet 
capacity 

 Chartered fleet 
capacity 

 Operating 
expenses 

 Revenue  Number of port 
calls (main 
ports)、 

 Number of port 
calls (side ports) 

 

Omrani and 
Keshavarz 

(2016) 

 Ship purchase 
cost 

 Crew cost 
 Costs of spare 

parts, provisions, 
insurance 

 Costs of repairs 
(voyage + dry 
dock) 

 Commercial 
container 
operation cost + 
other costs 

 Net income 
(Profits) 

 Lease + 
purchasing、Ship 
manning cost、
Supply of spares & 
provisions plus 3% 
overhead、Total 
available days per 
year (on-hire days) 
(Link 1-2) 

 Time charter to 
service provider 
(container)、Time 
charter to service 
provider 
(passenger) (Link 
2-3) 

 No. of containers 
carried per year、
No. of passenger + 
cars carried per 
year (Link 3-4) 

 Commercial 
container 
operation cost + 
other costs 

 Commercial 
passenger 
operation cost + 
other costs (stage 
2) 

Yu and Chen 
(2016) 

 vessel capacity  
 handling cost  
 other cost  
 fuel cost  

 revenue  
 carbon emissions  

 TEU-nautical 
miles  

 the number of 
destination 
ports  

 

Díaz-
Hernández et 

al. (2014) 

 Total cost 
 Labor cost 
 Intermediate 

input cost 
 Capital cost  

 Containerized 
general cargo  

 Non-containerized 
general cargo 

 Liquid bulk 
 Solid bulk 
 Passengers 
 Area under 

concession  

 Linear meters of 
docks 

 Total surface area 
 Price per linear 

meter of dock 
 Price of total 

surface area 
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Table A.3 Network DEA Measures in Supply Chain Studies 

Authors Original Inputs Final outputs Intermediate measres/links 

Amirteimoori et al. 
(2016) 

 Annual cost 
 Annual personnel turnover 
 Environmental cost 

 Number of trained 
personnel in the fields 
of job, safety, and 
health 

 Number of green 
products 

 Revenue 

 Number of products from 
supplier to manufacturer 

 Partnership cost in green 
production plans 

Izadikhah and Saen 
(2016) 

 Cost of work safety and 
labor health 

 Annual cost 
 Environmental cost 

 Number of obtained 
ISO certificates 

 Number of trained 
personnel in the fields 
of job, safety, and 
health 

 Rate of increasing of 
number of green 
products 

 Rate of increasing of 
Revenue 

 Rate of increasing of 
partnership 
cost in green production 
plans 

 Number of products from 
supplier 
to manufacturer 

Mahdiloo et al. (2016) 
 Engineering specifications  Environment 

performance 
 Product attributes 

Azadi et al. (2015) 

 Number of seats 
 Operating network 
 Cars-labor 

cost 
 Fuel cost 
 CO2 emission 

 Revenue 
 Passenger-km 
 Fuel saving 

 preventive maintenance 
 vehicle-km 
 environmental cost 
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