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Abstract. In performance evaluation, it is important to identify both the efficient frontier and the critical
measures. Data envelopment analysis (DEA) has been proven an effective tool for estimating the efficient
frontiers, and the optimized DEA weights may be used to identify the critical measures. However, due
to multiple DEA optimal weights, a unique set of critical measures may not be obtained for each decision
making unit (DMU). Based upon a set of modified DEA models, this paper develops an approach to identify
the critical measures for each DMU. Using a set of four Fortune’s standard performance measures, capital
market value, profit, revenue and number of employees, we perform a performance comparison between the
Fortune’s e-corporations and 1000 traditional companies. Profit is identified as the critical measure to the
performance of e-corporations while revenue the critical measure to the Fortune’s 1000 companies. This
finding confirms that high revenue does not necessarily mean profit for e-corporations while revenue means
a stable proportion of profit for the Fortune’s 1000 companies.
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1. Introduction

It has been well recognized that one single performance measure cannot suffice for the
purpose of performance evaluation and benchmarking, since performance measures have
complicated and often indiscernable relationships with each other and as a result, mul-
tiple measures are always necessary (see, e.g., Camp (1995), and Eccles and Nohria
(1992)). I.e., the performance of a set of decision making units (DMUs) (e.g., compa-
nies, and business processes) should be analyzed under the context of multiple measures
that characterize all aspects of the performance of DMUs. A performance index or
a performance frontier determined by a properly selected set of multiple performance
measures can be used as a guideline for the management in planning and monitoring.
Intuitively, one would determine a set of weights reflecting the relative importance or
tradeoffs among the measures, and then integrate the measures to evaluate the perfor-
mance. Once the set of weights is determined, the key factors related to the performance
can be identified. However, because of the “indiscernable relationships”, the determi-
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nation of the weights remains a complex task. In addition, each individual DMU may
have its own unique tradeoffs among a set of measures. The determination of one set
of weights is obviously not sufficient to capture the performance for each DMU. As a
result, performance evaluation along with the identification of critical performance mea-
sures becomes a difficult and challenging task under the context of multiple performance
measures.

As an alternative to the regression-based approaches where average performance
is estimated, a mathematical programming based method – data envelopment analysis
(DEA) has become an effective tool for determining performance frontiers or trade-off
curves when multiple measures (i.e., inputs and outputs) are present (e.g., Schmenner
and Swink (1998)). DEA optimizes the output and input weights that present the per-
formance of a DMU under evaluation in the most favorable light. Theoretically, we
could use the estimated DEA performance frontier to characterize the tradeoffs and
to identify the critical measures. However, the weights representing the tradeoffs are
transformed into DEA multipliers when DEA is solved. As a result, optimized DEA
multipliers do not represent the tradeoff weights in the original DEA formula. Al-
though, it is relatively easy to incorporate tradeoff information into DEA, extracting
the tradeoff information inherent in DEA is very difficult because of multiple optimal
DEA weights.

Since each DMU has its own inherent tradeoffs among the multiple measures that
significantly influence the performance, it is extremely important for the management
to know the critical measures. The current study takes a different and new perspective
to identifying the influential measures to DMUs’ performance. Note that once the DEA
evaluation is done, the management needs to either (i) maintain the best practice for
the efficient DMUs or (ii) achieve the performance frontier for the inefficient DMUs.
Thus, when a set of multiple performance measures is determined, measures that are
influential to maintaining and achieving the best practice should be regarded as critical
to the performance of DMUs. A critical measure is signaled by whether changes in its
value affect the performance. Under the framework of DEA, we develop an alterna-
tive approach, which is independent of identifying DEA weights or DEA multipliers, to
identify critical measures.

The new approach is applied to a comparative study between the Fortune’s
e-corporations that represent the 21st century new Internet economy and the
Fortune’s 1000 companies that represent the 20th century old economy. Four stan-
dard Fortune’s performance measures, capital market value, profit, revenue and num-
ber of employees, are used. It is shown that profit is the critical measure to 84% of
the e-corporations while revenue is the critical measure to 95% of the Fortune’s 1000
companies.

The rest of the paper is organized as follows. The next section discusses perfor-
mance evaluation and tradeoffs in DEA. We then develop a DEA-based approach for
identifying the critical performance measures. A comparative study of the Fortune’s
e-corporations and the Fortune’s 1000 companies is then demonstrated. Conclusions are
provided in the last section.
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2. Performance evaluation and DEA

Regression-based methods can be used in evaluating performance of a set of DMUs.
However, they are limited to only one dependent variable. For example,

y = βo +
m∑
i=1

βixi + ε, (1)

where βi are estimated coefficients which can be used to determine whether an inde-
pendent variable has a positive effect on the dependent variable or makes an important
contribution, see, e.g., Dewan, Michael, and Min (1998). I.e., by estimating the coeffi-
cients, we may identify the critical performance measures under the context of average
behavior.1 Also, the estimated regression line can be served as the benchmark in the
performance evaluation.

Formula (1) can be viewed as a performance frontier or tradeoff curve where xi
are inputs and y is the output. However, we are very likely to have multiple outputs yr
(r = 1, . . . , s). We may rewrite (1) as

s∑
r=1

uryr = α +
m∑
i=1

vixi, (2)

where ur and vi are unknown weights representing the relative importance or tradeoffs
among yr and xi .

Suppose we can estimate ur and vi , then for each DMUj , we can define

hj = α + ∑m
i=1 vixij∑s

r=1 uryrj
(3)

as a performance index, where xij (i = 1, 2, . . . , m) are multiple inputs, yrj (r =
1, 2, . . . , s), are multiple outputs for DMUj : j = 1, 2, . . . , n.

In order to estimate ur and vi , and further evaluate the performance of joth DMU,
(denoted as DMUo) by (2), DEA uses the following linear fractional programming prob-
lem (Charnes et al. (1994)):

min
α,vi ,ur

α + ∑m
i=1 vixio∑s

r=1 uryro
subject to

α + ∑m
i=1 vixij∑s

r=1 uryrj
� 1, j = 1, . . . , n,

ur, vi � 0 ∀r, i,

(4)

where, xio and yro are respectively the ith input and rth output for DMUo under evalua-
tion.

When h∗
o = 1, DMUo is efficient or on the performance frontier. Otherwise, if

h∗
o > 1, then DMUo is inefficient. All the efficient DMUs determine the performance

frontier.
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Note that when h∗
o = 1, we have

s∑
r=1

u∗
r yro = α∗ +

m∑
i=1

v∗
i xio, (5)

where ∗ represents the optimal values in model (4). That is, DEA has estimated the
“coefficients” in (2). It can be seen that while (1) estimates one set of coefficients,
DEA model (4) estimates one set of coefficients for each DMU, resulting a piecewise
linear tradeoff curve represented by several (5)-like equations associated with efficient
DMUs. We will shortly see that (5) is theoretically available, but very difficult to obtain
empirically.

Obviously, u∗
r and v∗

i represent the tradeoffs among various outputs and inputs. If
we can obtain the exact information on u∗

r and v∗
i , the critical performance measures can

be easily identified. However, in order to solve model (4), the following transformation
is used

t = 1∑s
r=1 uryro

, ωi = tvi, ωo = tα, µr = tur . (6)

Based upon (6), model (4) is solved in the following equivalent linear programming
problem:

min
ωo,ωi ,µr

ωo +
m∑
i=1

ωixio

subject to
s∑
r=1

µryrj −
m∑
i=1

ωixij − ωo � 0 ∀j,
s∑
r=1

µryro = 1,

µr, ωi � 0 ∀r, i,

(7)

or the dual to model (7)

ϕ∗
o = maxϕo

subject to
n∑
j=1

λjxij � xio, i = 1, 2, . . . , m,

n∑
j=1

λjyrj � ϕoyro, r = 1, 2, . . . , s,

n∑
j=1

λj = 1,

λj � 0, j = 1, . . . , n.

(8)
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Based upon (6), we have

ωi

ωk
= vi

vk
and

µr

µd
= ur

ud
.

Thus, µ∗
r and ω∗

i are not the exact weights representing the tradeoffs in model (4). In
addition, for efficient DMUs, model (7) often yields multiple optimal solutions on mul-
tipliers µr and ωi . Also,

s∑
r=1

µ∗
r yrj −

m∑
i=1

ω∗
i xij − ω∗

o = 0

may only represent supporting hyperplanes rather than the performance frontier in em-
pirical studies. This further leads to an incomplete tradeoff information. Because of
possible multiple optimal solutions in (7) and the transformation in (6), it is very diffi-
cult to back out the tradeoffs represented by u∗

r and v∗
i in model (4), i.e., the performance

frontier expressed by (5) is very difficult to obtain in empirical applications. We there-
fore develop an alternative approach to identifying the critical measures.

3. The method

Suppose that we obtain the performance frontier. In this case, for example v∗
k > v∗

i

indicates that the kth input measure is more influential in order for DMUo to achieve
the best-practice. I.e., the kth input is more important to DMUo’s performance which
is characterized by the efficiency score h∗

o. Note also that the DEA model (4) always
tries to assign larger vi and ur to smaller xio and larger yro, respectively, in order to
achieve the optimality. This indicates that when a set of multiple performance measures
(inputs and outputs) is determined, the relative importance or tradeoffs is determined by
the magnitudes of the inputs and outputs.

It can be seen from model (4) that for a specific DMU under evaluation, when a
specific input increases, the associated input weight will not increase and when a specific
output decreases, the associated output weight will not increase. Consider the frontier
represented by ABC in figure 1 with two inputs and a single output. In figure 1, v1 > v2

remains true for facet AB if DMU A’s x2 (uncritical one) changes its value, and v2 > v1

remains true for facet BC if DMU C’s x1 (uncritical one) changes its value. Mean-
while, DMUs A and C remain efficient when the uncritical inputs changes their value,
respectively.2 However, if we increase the x1 of DMU A or x2 of DMU C to a certain
level, DMU A or DMU C becomes inefficient.

The example in figure 1 indicates that (a) for efficient DMUs, the performance is
determined and characterized by the best-practice status, and (b) for inefficient DMUs,
the performance is determined and characterized by the distance to the frontier. Thus,
a measure that is critical to the performance should be characterized by whether the mea-
sure is critical to (i) maintaining the best-practice for efficient DMUs and (ii) achieving
the best-practice for inefficient DMUs.
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Figure 1. Critical measures and tradeoffs.

Because a set of multiple performance measures is given prior to the evaluation, a
critical measure is signaled by whether changes in its value affect the performance, not
by whether inclusion or exclusion of the measure affects the performance.

Definition. When a set of multiple performance measures is given, a specific measure is
said to be critical if changes in its value may alter the efficiency status of a specific DMU.

3.1. Identifying the critical output measure

Consider the following model where the dth output is given the pre-emptive priority to
change

max σd

s.t.
n∑

j=1,j �=o
λjydj � σdydo,

n∑
j=1,j �=o

λjyrj � yro0, r �= d,
n∑

j=1,j �=o
λjxij � xio, i = 1, . . . , m,

n∑
j=1,j �=o

λj = 1.

(9)
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In model (9), the DMUo under evaluation is excluded from the reference set and
only the dth output of DMUo is allowed to change while all other outputs and inputs are
fixed at their current levels. Four possible cases are associated with (9):

(i) σ ∗
d > 1,

(ii) σ ∗
d = 1,

(iii) σ ∗
d < 1 and

(iv) model (9) is infeasible.

When σ ∗
d > 1, DMUo has inefficiency in its dth output, since potential output increase

can be achieved by DMUo. Cases (ii)–(iv) indicate that no inefficiency exists in dth
output.

Lemma 1. Suppose DMUo is inefficient, then σ ∗
d > 1.

Proof. Note that h∗
o > 1 (or ϕ∗

o > 1 in model (8)). Since any optimal solution to (8) is
a feasible solution to (9), σ ∗

d > ϕ
∗
o > 1. �

Now, we consider the efficient DMUs and assume that DMUo is efficient.
Based upon model (9) the set of s outputs can be grouped into two subsets: set
O = {d: σ ∗

d � 1} and set O = {d: model (9) is infeasible for dth output}.

Theorem 1. When model (9) is infeasible, the magnitude of the dth output across all
DMUs has nothing to do with the efficiency status of DMUo.

Proof. Suppose the changes in the magnitude of the dth output across all DMUs affect
the efficiency status of DMUo. That is, there exist α and β such that when DMUj ’s
(j �= o) current dth output is changed from ydj to ŷdj = βydj , DMUo with its new dth
output of ŷdo = αydo becomes inefficient. Consider the following DEA model:

max η

s.t.
n∑
j=1

λjxij � xio, i = 1, . . . , m,

n∑
j=1

λj ŷdj � ηŷdo,

n∑
j=1

λjyrj � yro, r �= d,

n∑
j=1

λj = 1.
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By lemma 1, we have η∗ > 1 and λ∗
o = 0. Further, we have




n∑
j=1,j �=o

λ∗
jxij � xio,

n∑
j=1,j �=o

λ∗
j (βydj ) � η∗(αydo), r �= d,

n∑
j=1,j �=o

λ∗
jyrj � yro, r = 1, . . . , s,

n∑
j=1,j �=o

λ∗
j = 1,

indicating that λ∗
j and η∗α/β (= σd) are feasible in model (9). A contradiction. This

completes the proof. �

Theorem 1 indicates that the outputs in setO are not critical to the efficiency status
of DMUo, since changes in the outputs in set o do not change the efficiency classification
of DMUo. The efficiency classification of DMUo is stable to any changes in the dth
output across all DMUs when d belongs to set O .

However, decreases in outputs in set O to certain magnitudes result in a change of
efficiency status (performance) of DMUo. For example, when the dth output of DMUo

is decreased from the current level ydo to a level which is less than σ ∗
d ydo (σ ∗

d < 1), then
DMUo becomes inefficient. This in turn indicates that the outputs in set O are critical to
the performance of DMUo.

Based upon Seiford and Zhu (1998), σ ∗
d < 1 is a measure of efficiency stability for

efficient DMUs. I.e., σ ∗
d indicates possible output changes (decreases) before an efficient

DMUo becomes inefficient. Obviously, a larger σ ∗
d means that DMUo is more likely to

become inefficient when changes in the dth output occur. Now, let Pd∗ = maxd{σ ∗
d } for

the outputs in set O. From the above discussion, we conclude that the d∗th output is the
most critical output measure to the efficiency of DMUo. Because, DMUo’s efficiency
status is most sensitive to changes in the d∗th output.

Next, we consider inefficient DMUs and assume that DMUo is inefficient. For in-
efficient DMUs, the issue is how to improve the inefficiency to achieve the best-practice.
Note that when DMUo is inefficient, model (9) is equivalent to a regular DEA model
where the dth output is given the pre-emptive priority to change (Thanassoulis and
Dyson, 1992; Zhu, 1996). Since the focus here is how each individual output mea-
sure contributes to the performance of DMUo, we solve model (9) for each d and obtain
σ ∗
d > 1 (d = 1, . . . , d), where σ ∗

d measures how far DMUo is from the frontier in terms
of dth output.

As a matter of fact, model (9) provides an alternative way to characterize the in-
efficiency of DMUo. Each σ ∗

d indicates possible inefficiency existing in each associated
output when other outputs and inputs are fixed at their current levels. We then can rank
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the inefficiency by each optimal σ ∗
d . Let Gd∗ = mind{σ ∗

d }. That is, the d∗th output indi-
cates the least inefficiency. If the DMUo were to improve its performance through single
output improvement, the d∗th output would yield the most effective way. Because Gd∗
represents the shortest path onto the best-practice frontier when each output is given the
pre-emptive priority to improve, respectively. We therefore define that the d∗th output is
the most critical output to reach the performance frontier and to DMUo’s performance.

In summary, the most critical output is identified as the output associated with
maxd{σ ∗

d } for efficient DMUs and mind{σ ∗
d } for inefficient DMUs.

3.2. Identifying the critical input measure

Consider the following model when the kth input measure is of interest.

min τk

s.t.
n∑

j=1,j �=o
λjxkj � τkxko,

n∑
j=1,j �=o

λjxij � xio, i �= k,
n∑

j=1,j �=o
λjyrj � yro, r = 1, . . . , s,

n∑
j=1,j �=o

λj = 1,

(10)

Based upon model (10), we have

(i) τ ∗
k < 1,

(ii) τ ∗
k = 1,

(iii) τ ∗
k > 1, and

(iv) (10) is infeasible.

Case (i) indicates that inefficiency exists in DMUo’s kth input, since DMUo needs to
decrease its kth input to τ ∗

k xko in order to reach the performance frontier. Cases (ii)–(iv)
indicate that no inefficiency exists in DMUo’s kth input.

Now, suppose DMUo is efficient. Based upon model (10), the set ofm inputs can be
grouped into two subsets: set I = {k: τ ∗

k � 1} and set Ī = {k: model (10) is infeasible
for kth input}. Similar to theorem 1, we have

Theorem 2. When model (10) is infeasible, the magnitude of the kth input across all
DMUs has nothing to do with the efficiency status of DMUo.

Theorem 2 indicates that the inputs in set Ī are not critical to the efficiency status
of DMUo, since changes in the inputs in set Ī do not change the efficiency classification
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of DMUo. Let Tk∗ = mink{τ ∗
k } for inputs in set I . We conclude that the k∗th input is

the most critical input measure to the efficiency of DMUo. Because, DMUo’s efficiency
status is most sensitive to changes in the k∗th input.

Next, suppose DMUo is inefficient. We solve model (10) for each k and obtain
τ ∗
k < 1 (k = 1, . . . , m), where τ ∗

k measures how far DMUo is from the frontier in
terms of kth input. Each τ ∗

k indicates possible inefficiency existing in each associated
input when other inputs and outputs are fixed at their current levels. We then can rank
the inefficiency by each optimal τ ∗

k . Let Hk∗ = maxk{τ ∗
k }. Similar to the discussion

on identifying the most critical output measure, we say that the k∗th input is the most
critical input to reach the performance frontier and to DMUo’s performance, because the
k∗th input indicates the least inefficiency.

In summary, the most critical input is identified as the input associated with
mink{τ ∗

k } for efficient DMUs and maxk{τ ∗
k } for inefficient DMUs.

3.3. Extensions

The above discussion assumes that DMUs are able to adjust each input and each output
while other inputs and outputs are fixed. Situations when some measures are strongly
related with each other may occur. In that case, a set of inputs or outputs has to be
adjusted simultaneously and we need to consider the measures in groups. We use the
following models:

min TM

s.t.
n∑

j=1,j �=o
λjxij � TMxio, i ∈ M,

n∑
j=1,j �=o

λjxij � xio, i /∈ M,
n∑

j=1,j �=o
λjyrj � yro, r = 1, . . . , s,

n∑
j=1,j �=o

λj = 1,

(11)

and

max +Q

s.t.
n∑
j=1

λjyrj � +Qyro, r ∈ Q,
n∑
j=1

λjyrj � yro, r /∈ Q, (12)
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Table 1
Critical measures for the numerical example.

DMU τ∗
1 τ∗

2

A 3
2 infeasible

B 14
9

17
12

C infeasible 2

D 2
3

3
5

n∑
j=1

λjxij � xio, i = 1, . . . , m,

n∑
j=1,j �=o

λj = 1,

where inputs represented by set M and outputs represented by set Q are of interest.
Similar to the previous discussions, when DMUo is inefficient, we use max{T ∗

M}
and min{+∗

Q} to identify the most critical input and output measures, respectively. When
DMUo is efficient, infeasibility associated with (11) and (12) indicates the non-critical
inputs and outputs.

Finally, note that the above discussion is based upon the assumption that the DEA
performance frontier exhibits variable returns to scale. The development can be applied
to other DEA models with non-variable returns to scale performance frontiers through
changing the constraint of

n∑
j=1,j �=o

λj = 1.3

3.4. Numerical example

To further illustrate the current approach, we consider again the four DMUs shown in
figure 1. Table 1 reports the optimal value to model (10). It can be seen that for DMUD,
the first input is the critical measure since DMUD’s efficiency can be easily improved if
the first input is given the pre-emptive priority to change. For DMU A, the infeasibility
associated with the second input indicates that the first input is the critical measure.
Our approach also indicates that the second input is the critical measure to DMU C’s
performance. As for DMU B, because it is located at the intersection of AB and BC, it is
very difficult to determine which input is the critical factor by looking at the coefficients
of efficient facets. Our approach indicates that the second input is the critical one for
DMU B, because

τ ∗
2 < τ

∗
1

(
17
12 <

14
9

)
.
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4. An application

To capture the Internet’s effect on the economy, at the end of year 1999, Fortune mag-
azine launched the Fortune e-50 index which consists of 50 corporations who integrate
the Internet, computers and enterprise softwares to do the business. As stated in the 1999
December Fortune issue, each of the e-50 is or has the potential to be a major player in
the Internet economy. The list of e-corporation is decided by that a company must have
been public for at least six months and must have a market capital value that exceeds
$100 million. Table 2 provides the list of the e-50.

Market capital, profit, revenue and number of employees are provided by the For-
tune as the four standard measures to fully characterize the performance of the e-50
corporations. We therefore use them as a set of multiple performance measures. The
data on profit, employee and market capital are not available for Ariba (DMU26), and
therefore Ariba is excluded from the following analysis.

Because we are interested in the contribution of revenue, profit and employee to
the market value, we select the market capital as the DEA output and the other measures
as the DEA inputs. Model (8), an output-oriented DEA model, is used, because higher
market values are desirable given the current levels of revenue, profit and the number of
employees. (See Seiford and Zhu (1999b) and Zhu (2000) for other DEA analyses on
the Fortune 500 companies.)

The third column of table 3 reports the optimal value to model (8). Ten e-corpo-
rations are on the performance frontier.

Next, we apply the newly developed method to identify the critical input measures
to the market capital under the context of best-practice. Columns 3–5 of table 4 report
the results from model (10). For example, consider MCI WorldCom (DMU48), model
(10) is infeasible when revenue and employee are under consideration respectively and
model (10) yields the optimal value of 96.98 when profit is under consideration. This
indicates that once the three input measures are determined, the magnitudes of revenue
and employee do not affect the efficiency status of MCI WorldCom. However, the value
of profit affects MCI WorldCom’s efficiency status given the current levels of market
value, revenue and employee. Thus, profit is the critical factor to MCI WorldCom’s
performance.

Consider Charles Schwab (DMU2) which is an inefficient unit. The optimal values
to model (10) indicate that the profit measure is the critical one for Charles Schwab to
achieve the performance frontier.

The sixth column of table 4 reports the critical measure identified on the basis of
model (10). However, for efficient DMUs, it is likely that model (10) is infeasible for
each input measure. Samples can be found in America Online (DMU1), Yahoo (DMU6)
and Microsoft (DMU20). This may imply that some measures must be considered in
groups. We therefore employ model (11) for all possible combinations of the three input
measures. The last column of table 4 reports the results based upon model (11). Note
that model (11) is not applied to the inefficient DMUs.
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Table 2
Fortune’s e-corporations.

DMU No. Name Revenue Profits Employees Market capital Year
$ millions $ millions $ millions founded

E-COMPANIES

1 America Online 4777 762 12100 164308 1985
2 Charles Schwab 4113 498 13300 34194 1986
3 Amazon.com 1015 −291 2100 21202 1994
4 E∗Trade Group 621 −54 1735 8341 1982
5 Knight/Trimark Group 618 119 446 4389 1995
6 Yahoo 341 22 803 47946 1995
7 Ameritrade Holding 301 12 985 3740 1992
8 EarthLink Network 254 −88 1343 1409 1994
9 Priceline.com 189 −125 194 7963 1998

10 CMGI 176 476 1024 12567 1986
11 Lycos 36 −52 456 5687 1995
12 Excite@Home 129 −324 570 14647 1995
13 eBay 125 7 138 17106 1995
14 DoubleClick 103 −22 482 5947 1996
15 RealNetworks 89 −4 434 9148 1994
16 CNet 79 40 491 3481 1995
17 Healtheon 68 −68 648 2347 1995
18 eToys 38 −47 306 6276 1996
19 VerticalNet 8 −21 220 2515 1995

NET SOFTWARE AND SERVICE COMPANIES

20 Microsoft 19747 7785 31396 471573 1975
21 Oracle 9063 1332 44000 85776 1977
22 Intuit 848 377 3675 5942 1983
23 Network Associates 785 −127 2700 2871 1992
24 Cambridge Tech. Partners 628 35 4444 726 1991
25 TMP Worldwide 585 10 5200 2976 1967
26 Ariba 45.4 ∗ ∗ ∗ 1996
27 Citrix Systems 323 93 620 7169 1989
28 Macromedia 167 24 553 2690 1992
29 Network Solutions 142 17 385 4801 1979
30 Concentric Network 110 −82 508 1054 1991
31 Exodus Communications 108 −82 472 7080 1992
32 BroadVision 71 10 271 6777 1993
33 Inktomi 71 −24 185 5709 1996
34 Security First Technologies 44 −19 312 1345 1995
35 Razorfish 36 2 414 1896 1995

NET HARDWARE COMPANIES

36 IBM 87448 7701 291067 167567 1911
37 Lucent Technologies 38303 4766 153000 211415 1995
38 Intel 28194 7371 64500 285803 1968
39 Dell Computer 21670 1750 24400 110530 1984
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Table 2
(Continued).

DMU No. Name Revenue Profits Employees Market capital Year
$ millions $ millions $ millions founded

NET HARDWARE COMPANIES

40 Cisco Systems 12154 2096 21000 237215 1984
41 Sun Microsystems 11726 1031 29700 85861 1982
42 EMC 4459 967 9700 75371 1979
43 Qualcomm 3937 201 11600 43919 1981
44 Network Appliance 335 42 816 6327 1992
45 Broadcom 335 40 436 15994 1991
46 Juniper Networks 31 −30 190 14455 1992

NET COMMUNICATION COMPANIES

47 AT&T 56968 6037 107800 154791 1875
48 MCI WorldCom 30720 −883 77000 162492 1983
49 Qwest Communications 3424 −5 8700 27404 1997
50 Global Crossing 691 79 10000 26109 1997

Table 3
Performance evaluation of Fortune’s e-corporations.

DMU No. Name ϕ∗
o Rank based on (13)

1 America Online 1.00000 2
2 Charles Schwab 3.83409 17
3 Amazon.com 1.05723 5
4 E∗Trade Group 5.31514 24
5 Knight/Trimark Group 7.15192 39
6 Yahoo 1.00000 4
7 Ameritrade Holding 11.63487 38
8 EarthLink Network 25.09020 46
9 Priceline.com 1.00000 23

10 CMGI 2.39677 28
11 Lycos 4.30319 30
12 Excite@Home 1.00000 8
13 eBay 1.00000 19
14 DoubleClick 3.71566 31
15 RealNetworks 2.26509 25
16 CNet 5.64226 41
17 Healtheon 7.23136 42
18 eToys 2.32675 27
19 VerticalNet 1.00000 43
20 Microsoft 1.00000 12
21 Oracle 2.31196 7
22 Intuit 10.30718 37
23 Network Associates 13.81890 36
24 Cambridge Tech. Partners 72.12135 49
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Table 3
(Continued).

DMU No. Name ϕ∗
o Rank based on (13)

25 TMP Worldwide 16.68021 40
27 Citrix Systems 5.50414 32
28 Macromedia 10.83562 44
29 Network Solutions 5.34769 35
30 Concentric Network 19.73886 48
31 Exodus Communications 2.90959 26
32 BroadVision 2.74452 33
33 Inktomi 2.77061 29
34 Security First Technologies 11.79142 47
35 Razorfish 7.90885 45
36 IBM 2.79636 18
37 Lucent Technologies 1.72137 10
38 Intel 1.59834 16
39 Dell Computer 2.03503 15
40 Cisco Systems 1.00000 3
41 Sun Microsystems 2.24478 9
42 EMC 1.94255 14
43 Qualcomm 2.22318 6
44 Network Appliance 1.93360 21
45 Broadcom 7.47555 34
46 Juniper Networks 1.00000 20
47 AT&T 2.64384 22
48 MCI WorldCom 1.00000 1
49 Qwest Communications 2.61124 13
50 Global Crossing 2.18328 11

Table 4
Critical measures for Fortune’s e-corporations.

DMU No. Name Revenue Profit Employee Critical measures

Based on Based on
model (10) model (11)

1 America Online infeasibility infeasibility infeasibility {profit, revenue}
2 Charles Schwab 0.0520 0.3619 0.0381 {profit}
3 Amazon.com 0.5563 0.9817 0.7884 {profit}
4 E*Trade Group 0.0463 0.6708 0.0945 {profit}
5 Knight/Trimark Group 0.0188 0.6297 0.3094 {profit}
6 Yahoo infeasibility infeasibility infeasibility {profit, revenue,

employee}
7 Ameritrade Holding 0.0344 0.6283 0.1401 {profit}
8 EarthLink Network 0.1368 0.7066 0.1328 {profit}
9 Priceline.com infeasibility 1.1200 1.5994 {profit} {profit, revenue}

10 CMGI 0.1555 0.4180 0.1348 {profit}
11 Lycos 0.1736 0.7581 0.3700 {profit}
12 Excite@Home infeasibility 1.4459 infeasibility {profit} {profit, revenue}
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Table 4
(Continued).

DMU No. Name Revenue Profit Employee Critical measures

Based on Based on
model (10) model (11)

13 eBay infeasibility infeasibility 1.7284 {employee} infeasible
14 DoubleClick 0.1419 0.7375 0.3361 {profit}
15 RealNetworks 0.2335 0.7661 0.3639 {profit}
16 CNet 0.1248 0.7460 0.3329 {profit}
17 Healtheon 0.3937 0.8759 0.3337 {profit}
18 eToys 0.6037 0.9469 0.6886 {profit}
19 VerticalNet 3.8750 infeasibility infeasibility {revenue} {profit, revenue}
20 Microsoft infeasibility infeasibility infeasibility {profit, revenue,

employee}
21 Oracle 0.1968 0.3002 0.0803 {profit}
22 Intuit 0.0172 0.4408 0.0376 {profit}
23 Network Associates 0.0641 0.7296 0.0733 {profit}
24 Cambridge Tech. Partners 0.0127 0.6063 0.0311 {profit}
25 TMP Worldwide 0.0152 0.6238 0.0265 {profit}
27 Citrix Systems 0.0525 0.5797 0.2226 {profit}
28 Macromedia 0.0499 0.6331 0.2496 {profit}
29 Network Solutions 0.0874 0.7455 0.3584 {profit}
30 Concentric Network 0.2942 0.7667 0.3922 {profit}
31 Exodus Communications 0.3326 0.7938 0.4261 {profit}
32 BroadVision 0.2283 0.8749 0.6195 {profit}
33 Inktomi 0.5639 0.9775 0.9381 {profit}
34 Security First Technologies 0.1818 0.9023 0.5859 {profit}
35 Razorfish 0.2222 0.8968 0.4523 {profit}
36 IBM 0.0564 0.0185 0.0324 {revenue}
37 Lucent Technologies 0.1846 0.2452 0.0824 {profit}
38 Intel 0.3794 0.4202 0.2788 {profit}
39 Dell Computer 0.1258 0.3242 0.2181 {profit}
40 Cisco Systems infeasibility 1.0754 infeasibility {profit} {profit, revenue}
41 Sun Microsystems 0.1524 0.2609 0.1192 {profit}
42 EMC 0.3110 0.4847 0.2870 {profit}
43 Qualcomm 0.0772 0.5508 0.0617 {profit}
44 Network Appliance 0.1351 0.7314 0.3165 {profit}
45 Broadcom 0.0458 0.6096 0.1691 {profit}
46 Juniper Networks 3.5327 infeasibility infeasibility {revenue} {profit, revenue}
47 AT&T 0.0775 0.0025 0.0790 {employee}
48 MCI WorldCom infeasibility 96.9787 infeasibility {profit} {profit, revenue}
49 Qwest Communications 0.0441 0.5771 0.0443 {profit}
50 Global Crossing 0.2010 0.6601 0.0332 {revenue}

For Yahoo and Microsoft, model (11) is feasible (has optimal solutions) when only
all three inputs are in set M. For America Online, model (11) is feasible (has optimal
solutions) when profit and revenue are in set M.
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Model (11) is also applied to the remaining 7 efficient e-corporations, namely, Ex-
cite@Home (DMU12), Vertical Net (DMU19), Cisco System (DMU40), Juniper Net-
works (DMU46) and MCI WorldCom (DMU48). Model (11) is feasible when profit and
revenue are in set M.

Except for America Online, Yahoo, eBay, Vertical Net, Microsoft, IBM, Juniper
Networks, AT&T and Global Crossing, all the e-corporations indicate profit as their
critical measure. This confirms that for the majority of the e-corporations that are rely
on the Internet for business, revenue does not necessarily mean profit. In fact, about 40%
of the e-corporations had negative profit in year 1999. (The negative values are treated
by the translation invariance property in DEA (Ali and Seiford (1990)).)

A closer look at table 4 indicates that America Online, Yahoo and Microsoft have
distinguished themselves from the e-corporations, because the results from model (11)
imply that their high revenue means profit. Note that among the inefficient units, em-
ployee is identified as the critical measure for eBay and AT&T, and revenue is identified
as the critical measure for IBM.

The e-corporations actually represent the 21st century new economy where the
electronic and information technologies are heavily used. To further illustrate the ap-
proach, we next apply models (10) and (11) to the Fortune 1000 companies in 1995
who represent old economy where the companies design, build and deliver physical,
molecular-based products to customer. The purpose is to see whether the new economy
e-corporations behave differently compared to the old economy companies in terms of
the critical measures.

Since the e-corporations belong to computer and telecommunication industries, we
exclude all those Fortune’s 1000 companies who are in the computer and telecommuni-
cation industries from the analysis. We also exclude those Fortune 1000 companies who
do not have complete data on the four performance measures. As a result, we have 51
industries with 760 companies which are different from the e-corporations (see the first
column in table 5).

Table 5 summarizes the results from the new approach. The second column reports
the number of companies in each industry. The third, fourth and fifth columns report
how many companies indicate revenue, profit and employee as their critical measures,
respectively. For example, the second row in table 5 indicates that (i) there are 4 compa-
nies in the advertising and marketing industry, and (ii) revenue is identified as the critical
measure for all companies. In the motor vehicle industry, only two companies (General
Motor and Ford) (9.52%; two out of 21) indicate that profit is the critical measure while
other 19 companies indicate that revenue is the critical measure.

Our approach indicates that revenue is the critical factor to 95% of the 760 com-
panies in the Fortune’s top 1000 list. In fact, these “old-economy” companies sever
relatively mature market or command a lead in markets where they compete. Our find-
ing is consistent with the belief that revenue means a stable proportion of the profit for
the old economy companies. Also, our approach does indicate that the e-corporations
and the Fortune’s 1000 companies behave differently.
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Table 5
Critical measures for Fortune’s 1000 companies.

Industry Companies Revenue (%) Profit (%) Employee (%)

Advertising, marketing 4 100 0 0
Aerospace 11 90.91 9.09 0
Airlines 9 100 0 0
Apparel 5 100 0 0
Beverages 7 100 0 0
Brokerage 7 100 0 0
Building materials, glass 4 100 0 0
Chemicals 39 97.44 2.56 0
Commercial banks 55 98.18 1.82 0
Diversified financials 14 92.86 7.14 0
Electric and gas utilities 73 98.63 0 1.37
Electronics, electrical equipment 41 95.12 4.88 0
Engineering, construction 11 90.91 0 9.09
Entertainment 3 33.33 33.33 33.33
Food 27 92.59 0 7.41
Food and drug stores 20 100 0 0
Food services 5 80.00 20.00 0
Forest and paper products 30 100 0 0
Furniture 5 100 0 0
General merchandisers 16 87.50 12.50 0
Health care 18 100 0 0
Hotels, casinos, resorts 7 100 0 0
Industrial and farm equipment 27 100 0 0
Insurance: life & health 19 94.74 5.26 0
Insurance: prop. & casualty 24 87.50 12.50 0
Mail, package and freight delivery 3 100 0 0
Marine services 2 100 0 0
Metal products 11 100 0 0
Metals 21 100 0 0
Mining, crude-oil production 7 100 0 0
Motor vehicles and parts 21 90.48 9.52 0
Petroleum refining 18 50.00 33.33 16.67
Pharmaceuticals 14 85.71 14.29 0
Pipelines 10 80.00 0 20.00
Publishing, printing 17 100 0 0
Railroads 5 100 0 0
Rubber and plastic products 8 100 0 0
Savings institutions 8 100 0 0
Scientific, photo, control equip. 18 94.44 5.56 0
Soaps, cosmetics 8 87.50 12.50 0
Specialist retailers 30 100 0 0
Temporary help 5 100 0 0
Textiles 6 100 0 0
Tobacco 4 75.00 25.00 0
Toys, sporting goods 3 100 0 0
Transportation equipment 5 100 0 0
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Table 5
(Continued).

Industry Companies Revenue (%) Profit (%) Employee (%)

Truck leasing 2 100 0 0
Trucking 3 100 0 0
Waste management 3 100 0 0
Wholesalers 40 90.00 0 10.00
Miscellaneous 7 100 0 0
Total 760 94.61 3.55 1.84

5. Conclusions

DEA has been proven an effective method with respect to estimating tradeoff curves
and evaluating performance under the context of multiple performance measures. The
current paper shows that if value changes in performance measures influence the perfor-
mance, such measures are critical. We develop a DEA-based approach to identify critical
measures when a set of multiple performance measures is given. The newly developed
approach circumvents the need for estimating the tradeoffs in DEA. As a result of the
current study, DEA can be used to not only evaluate performance, but also identify the
critical measures.

Finally, we should point out that the new method is based upon relative efficiency
concept. If one adds or deletes DMUs, the resulting tradeoff curve may be different.
As a result, different critical measures may be identified. In other words, if the tradeoff
curve changes, a new set of critical measures may be identified.

Notes

1. However, as pointed out by one referee, one should note that the explanatory variables will tend to be
correlated because small units tend to have lower values for all variables and large units tend to have large
values. This will lead to the problem of multicollinearity which means that the regression coefficients
will have great uncertainty and can even have the wrong sign.

2. Note that for example, if the second input of DMU A decreases its current level to 3, the level used by
DMU B, then we no longer have the efficient facet AB. Since DMU B becomes inefficient.

3. For a complete discussion on returns to scale and DEA models, please refer to Seiford and Zhu (1999a).
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