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Abstract

An issue of considerable importance, both from a practical organizational standpoint and from a costs
research perspectives, involves the allocation of /xed resources or costs across a set of competing entities
in an equitable manner. Cook and Kress (Eur. J. Oper. Res. 119 (1999) 652) propose a data envelopment
analysis (DEA) approach to obtain a theoretical framework for such cost allocation problems. Their approach
cannot be used directly to determine a cost allocation among the decision making units (DMUs), but rather
to examine existing costing rules for equity. The current paper extends the Cook and Kress (Eur. J. Oper.
Res. 119 (1999) 652) approach, and provides a practical approach to the cost allocation problem. It is shown
that an equitable cost allocation can be achieved using DEA principles.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

An issue of considerable importance, both from a practical organizational standpoint and from a
costs research perspective, involves the allocation of /xed resources or costs of a set of compet-
ing entities in an equitable manner. An example is the allocation of a manufacturer’s advertising
expenditures onto local retailers. Cook and Kress [1] propose a data envelopment analysis (DEA)
approach to obtain this kind of cost allocation. Their theoretical foundation is based upon two as-
sumptions: invariance and pareto-minimality. While their method is a natural extension of the simple
one-dimensional problem to the general multiple-input multiple-output case, no executable approach
is provided to determine a set of such cost allocation. As indicated in Cook and Kress [1], their
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approach is not intended to be used directly to determine a cost allocation among the decision making
units (DMUs), but rather to examine existing costing rules for equity. Their approach is also based
upon an output-oriented DEA model whose frontier exhibits constant returns to scale (CRS).

Beasley [2] provide an alternative DEA-based cost allocation approach by maximizing the average
e>ciency across all DMUs and adding additional constraints and models to obtain a unique cost
allocation. We note that Cook and Kress [1] and Beasley [2] are two very diIerent approaches,
because the underlying assumptions are diIerent. The former assumes that the current DEA e>-
ciency remain unchanged after the cost allocation while the latter assumes that the average DEA
e>ciency of all DMUs is maximized after the cost allocation, i.e., the original DEA e>ciency can be
changed.

Apparently, there are many feasible cost allocations to Cook and Kress [1]. We are only interested
in /nding one cost allocation. The current paper extends the results in Cook and Kress [1] into other
DEA models with diIerent orientations. While Cook and Kress [1] provide a theoretical framework
for examining cost allocation problems, the current paper builds upon this idea to provide a practical
approach wherein cost allocations can actually be achieved under DEA.

The following section provides basic DEA models and summarizes the results in Cook and Kress
[1]. Section 3 extends their model to enable the allocation of costs. This new approach is illustrated
in Section 4 with the numerical example in Cook and Kress [1]. The /nal section presents concluding
remarks.

2. Background

Suppose we have a set of units, DMUj, (j= 1; : : : ; n). Each DMU uses m inputs xij (i= 1; : : : ; m)
to produce s outputs yrj (r = 1; : : : ; s). Then the (relative) e>ciency of DMUj can be expressed
as

Ej =
∑s

r=1 uryrj∑m
i=1 vixij

;

where ur and vi are (unknown) output and input multipliers, respectively. In DEA, Ej is ob-
tained by solving the following CCR ratio model [3], when information on ur and vi is not
available.

max
∑s

r=1 uryrjo∑m
i=1 vixijo

s:t:
∑s

r=1 uryrj∑m
i=1 vixij

6 1; ∀j

ur; vi¿ 0

(1)

where jo represents one of the DMUs, DMUjo . Model (1) is usually referred to as the input-oriented
CRS DEA model.
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If the relative e>ciency is de/ned as
∑m

i=1 vixij=
∑s

r=1 uryrj, then the associated output-oriented
DEA model is

min
∑m

i=1 vixijo∑s
r=1 uryrjo

s:t:
∑m

i=1 vixij∑s
r=1 uryrj

¿ 1; ∀j

ur; vi¿ 0:

(2)

Suppose that a cost R is to be distributed among the n DMUs. That is, each DMU is to be
allocated a cost rj such that

n∑
j=1

rj = R:

If this rj is treated as a new input, then the e>ciency becomes

ERj =
∑s

r=1 uryrj∑m
i=1 vixij + vrj

(
or

∑m
i=1 vixij + vrj∑s
r=1 uryrj

)
:

In the Cook and Kress model, it is assumed that R will be assigned in such a way that the relative
e>ciencies of DMUs remain unchanged. Speci/cally, they adopt an invariance assumption, Ej =ERj .
The authors observe that due to the optimization procedures, however, it is permissible for v = 0.
As a result, R can be distributed in its entirety among only the ine>cient DMUs in any proportion
whatever, meaning that the DEA e>ciency ratings would not change, and the invariance assumption
would be satis/ed. However, any allocation which penalizes only the ine>cient DMUs, would gen-
erally be unacceptable to the organization. Thus, Cook and Kress [1] impose the pareto-minimality
condition which does not permit the cost allocation only among ine>cient DMUs.

Using these two assumptions, Cook and Kress [1] develop a theoretical framework for the cost
allocation, based upon model (2). In the multiple inputs and multiple outputs case, their approach
obtains a characterization for an equitable allocation of shared costs. However, as pointed out by
Cook and Kress [1], this characterization cannot be used to directly determine a cost allocation
among the DMUs, but rather it serves as a means of examining existing costing rules for equity.

In the following section, we use DEA principles to develop a procedure that can be used to derive
a cost allocation among the n DMUs. Our procedure also enables us to consider the cost allocation
issue under other DEA models with diIerent orientations, e.g., model (1).

3. A practical DEA approach to �xed cost allocation

3.1. Output-oriented CRS cost allocation

An output-oriented DEA model where inputs are /xed at their current levels while maximizing
the output levels, i.e., model (2), is used in Cook and Kress [1]. Here, we consider the following
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DEA model which is the linear programming model equivalent to model (2):

Ejo = max�jo

s:t:
n∑
j=1

�jxij6 xijo ; i = 1; 2; : : : ; m;

n∑
j=1

�jyrj¿�joyrjo ; r = 1; 2; : : : ; s;

�j¿ 0:

(3)

Intuitively, to obtain ERjo , we would apply model (3) with the additional input of rj. However,
because of the pareto-minimality condition which does not permit the cost allocation only among in-
e>cient DMUs, ERjo should be calculated as the optimal solution to the following linear programming
model:

ERjo = max �̃jo

s:t:
n∑
j=1

�jxij6 xijo ; i = 1; 2; : : : ; m;

n∑
j=1

�jrj = rjo ;

n∑
j=1

�jyrj¿ �̃joyrjo ; r = 1; 2; : : : ; s;

�j¿ 0:

(4)

Note that
∑n

j=1 �jrj6 rjo is replaced by
∑n

j=1 �jrj = rjo . Referring to Cook and Kress [1], this
equation arises from the requirement that the reduced cost is to be non-negative for the new input
variable, rjo . In fact, the expression −rjo +

∑n
j=1 �jrj is the reduced cost for that variable. This

equation excludes the possible ine>ciency (non-zero DEA slack) from the cost allocation. Note also
that for a non-frontier (ine>cient) DMU,

∑
j∈F �

j∗o
j rj = rjo , where F represents the set of frontier

(e>cient) DMUs. Because some �j
∗
o
j must be positive,

∑n
j=1 �jrj = rjo ensures that cost allocation

will not be entirely distributed among ine>cient DMUs.
If DMUjo is a frontier DMU, then Ejo = �∗

jo = �̃∗
jo = 1. Suppose DMUjo is not a frontier DMU,

then we have �∗
jo ¿ 1 with a set of optimal �j

∗
o
j for model (3). Now if

∑
�j

∗
o
j rj = rjo , then �j

∗
o
j and

�∗
jo are also optimal in model (4). As a result, Ejo = �∗

jo = �̃∗
jo = ERjo ¿ 1.

Let N represents the set of non-frontier DMUs. Assume we have a cost allocation of rj (j =
1; : : : ; n), then

∑
j∈F �

t∗
j rj = rt for all t ∈N . This relationship based upon the optimal solutions in

model (3), satis/es the invariance assumption and does not allow the cost allocation only among
ine>cient DMUs.
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Consequently, this cost allocation can be obtained by solving the following linear programming
problem with an arbitrary objective function P:

min P

s:t:
∑
j∈F

�t
∗
j rj = rt t ∈N;

n∑
j=1

rj = R;

(5)

where �t
∗
j are optimal values in model (3) when non-frontier DMUs (t ∈N ) are under evaluation.

3.2. Input-oriented CRS cost allocation

Consider now the cost allocation problem using the input-oriented CRS DEA model, i.e., model
(1). In this case, Ejo is calculated using the following model which is equivalent to model (1)

Ejo = min �jo

s:t:
n∑
j=1

�jxij6 �joxijo ; i = 1; 2; : : : ; m;

n∑
j=1

�jyrj¿yrjo ; r = 1; 2; : : : ; s;

�j¿ 0:

(6)

ERjo is calculated using the following linear programming problem:

ERjo = min �̃jo

s:t:
n∑
j=1

�jxij6 �̃joxijo ; i = 1; 2; : : : ; m;

n∑
j=1

�jrj = rjo ;

n∑
j=1

�jyrj¿yrjo ; r = 1; 2; : : : ; s;

�j¿ 0:

(7)

where rj satis/es
∑

j∈F �
t∗
j rj = rt for all t ∈N and �t

∗
j are optimal values in model (6).

Again the
∑n

j=1 �jrj = rjo in model (7) ensures that the cost allocation does not occur only in
ine>cient DMUs. Now, if DMUjo is a frontier DMU, then Ejo =ERjo =1. Next, suppose DMUjo is not

a frontier DMU, then �∗
jo ¡ 1 with a set of optimal �j

∗
o
j in model (6). If the optimal �j

∗
o
j in model (6)

satisfy
∑
�j

∗
o
j rj = rjo , then �j

∗
o
j and �∗

jo are also optimal in model (7). Thus, Ejo = �∗
jo = �̃∗

jo =ERjo ¡ 1.
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Therefore, we can use model (5) with optimal values of �j
∗
o
j obtained from model (6) to get

a cost allocation. Note that model (7) is actually a DEA model where the /xed cost is treated
as an uncontrollable or non-discretionary input. This, in fact, reNects the real situation of the cost
allocation, since the DMUs themselves do not have control over the /xed cost.

4. Illustration

Table 1 presents the numerical example used in Cook and Kress [1] where we have 12 DMUs, 3
inputs and 2 outputs. As in Beasley [2], we suppose that we have a /xed cost of 100 to be allocated.
Five DMUs are frontier DMUs with a score of one and seven are non-frontier with a score greater
than one based upon model (3) (see the 7th column in Table 1).

Table 2 reports the optimal � for non-frontier DMUs from model (3). For example, when DMU1
is under evaluation by model (3), the frontier DMUs are DMU8 (with �∗

8 = 0:52), and DMU9 (with
�∗

9 = 0:64).

Table 1
Sample DMUs

DMU Input1 Input2 Input3 Output1 Output2 E>ciency Fixed cost

1 350 39 9 67 751 1.32 11.22
2 298 26 8 73 611 1.08 0
3 422 31 7 75 584 1.34 16.95
4 281 16 9 70 665 1 0
5 301 16 6 75 445 1 0
6 360 29 17 83 1070 1.04 15.43
7 540 18 10 72 457 1.16 0
8 276 33 5 78 590 1 0
9 323 25 5 75 1074 1 17.62

10 444 64 6 74 1072 1.20 21.15
11 323 25 5 25 350 3 17.62
12 444 64 6 104 1199 1 0

Table 2
Optimal �

DMU DMU DMU

DMU1 0.52 8 0.64 9
DMU2 0.50 4 0.04 5 0.53 8
DMU3 0.32 5 0.06 8 0.96 9
DMU6 0.12 4 0.16 8 0.88 9
DMU7 0.14 4 0.99 5
DMU10 1.2 9
DMU11 1 9
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Based upon Table 2 and model (5), we obtain a cost allocation (see the last column in Table 1).
It can be easily seen that this cost allocation satis/es the invariance and pareto-minimality conditions
in Cook and Kress [1].

Beasley [2] also used this numerical example to obtain a unique cost allocation, r1=6:78, r2=7:21,
r3 = 6:83, r4 = 8:47, r5 = 7:08, r6 = 10:06, r7 = 5:09, r8 = 7:74, r9 = 15:11, r10 = 10:08, r11 = 1:58 and
r12 = 13:97. It is easy to verify that all DMUs become e>cient when this cost allocation is used as
an additional input, i.e., this cost allocation is not a feasible one under the assumptions of Cook and
Kress [1] and the current paper. Thus, this numerical example indicates that the Cook and Kress [1]
and Beasley [2] approaches are diIerent.

Note that there are N + 1 constraints with n variables in the model (5). As a result, model (5)
does not yield a unique solution. 1 However, we are only interested in obtaining a feasible cost
allocation. If one is interested in obtaining a unique cost allocation, one can incorporate additional
constraints on rj, e.g., cone ratio [8] type of constraints into model (5) or impose lower and upper
bounds of the cost allocation as in Beasley [2]. Such a priori information will also eliminate the
zero cost allocation among some DMUs if the assumption is that each DMU should have a share
of cost allocation.

5. Conclusions

The current paper develops a DEA-based approach to cost allocation problems. As a result of the
current study, we can extend the Cook and Kress [1] approach to other DEA models with diIerent
model orientations. For example, if we incorporate

∑n
j=1 �j = 1 into models (3) and (4), we obtain

a cost allocation under the condition of variable returns to scale (VRS). We leave the development
to the interested reader.
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