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Abstract

In data envelopment analysis (DEA), performance evaluation is generally assumed to be based upon a set of quan-
titative data. In many real world settings, however, it is essential to take into account the presence of qualitative factors
when evaluating the performance of decision making units (DMUs). Very often rankings are provided from best to
worst relative to particular attributes. Such rank positions might better be presented in an ordinal, rather than numer-
ical sense. The paper develops a general frame work for modeling and treating qualitative data in DEA and provides a
unified structure for embedding rank order data into the DEA framework. The existing techniques are discussed and
their equivalence is demonstrated. Both continuous and discrete projection models are provided. It is shown that qua-
litative data can be treated in conventional DEA methodology.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the data envelopment analysis (DEA) model of Charnes et al. (1978), each member of a set of decision
making units (DMUs) is to be evaluated relative to its peers. This evaluation is generally assumed to be
based on a set of quantitative output and input factors. In many real world settings, however, it is essential
to take into account the presence of qualitative factors when rendering a decision on the performance of a
DMU. Very often it is the case that for a factor such as management competence, one can, at most, provide
a ranking of the DMUs from best to worst relative to this attribute. The capability of providing a more
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precise, quantitative measure reflecting such a factor is generally beyond the realm of reality. In some sit-
uations such factors can be legitimately �quantified�, but very often such quantification may be superficially
forced as a modeling convenience.

In situations such as that described, the �data� for certain influence factors (inputs and outputs) might
better be represented as rank positions in an ordinal, rather than numerical sense. Refer again to the man-
agement competence example. In certain circumstances, the information available may permit one only to
put each DMU into one of L categories or groups (e.g. �high�, �medium� and �low� competence). In other
cases, one may be able to provide a complete rank ordering of the DMUs on such a factor.

Cook et al. (1993, 1996) first presented a modified DEA structure, incorporating rank order data. The
1996 article applied this structure to the problem of prioritizing a set of research and development projects,
where both inputs and outputs were defined on a Likert scale. An alternative to the Cook et al approach
was provided in Cooper et al. (1999) in the form of the imprecise DEA (IDEA) model. While various forms
of imprecise data were examined, one major component of that research focused on ordinal (rank order)
data.

In the current paper, we present a unified structure for embedding rank order or Likert scale data into
the DEA framework. To provide a practical setting for the methodology to be developed herein, Section 2
briefly discusses the R&D project selection problem as presented in more detail in Cook et al. (1996), and
the Korean Telephone offices problem of Kim et al. (1999). Section 3 presents a continuous projection
model, based on the conventional radial model of Charnes et al. (1978). In Section 4 this approach is
compared to the IDEA methodology of Cooper et al. (1999). We demonstrate that IDEA for Likert scale
data is in fact equivalent to the earlier approach of Cook et al. (1996). Section 5 develops a discrete
projection methodology that guarantees projection to points on the Likert scale. Conclusions and further
directions are addressed in Section 6.
2. Applications

2.1. Ordinal data in R&D project selection

Consider the problem of selecting R&D projects in a major public utility corporation with a large
research and development branch. Research activities are housed within several different divisions, for
example, thermal, nuclear, electrical, and so on. In a budget constrained environment in which such an
organization finds itself, it becomes necessary to make choices among a set of potential research initiatives
or projects that are in competition for the limited resources. To evaluate the impact of funding (or not fund-
ing) any given research initiative, two major considerations generally must be made. First, the initiative
must be viewed in terms of more than one factor or criterion. Second, some or all of the criteria that enter
the evaluation may be qualitative in nature. Even when clearly quantitative factors are involved, such as
long term saving to the organization it may be extremely difficult to obtain even a crude estimate of the
value of that factor. The most that one can do in many such situations is to classify the project (according
to this factor) on some scale (high/medium/low or say a 5-point scale).

Let us assume that for each qualitative criterion each initiative is rated on a 5-point scale, where the par-
ticular point on the scale is chosen through a consensus on the part of executives within the organization.
Table 1 presents an illustration of how the data might appear for 10 projects, 3 qualitative output criteria
(benefits), and 3 qualitative input criteria (cost or resources). In the actual setting examined, a number of
potential benefit and cost criteria were considered as discussed in Cook et al. (1996).

We use the convention that for both outputs and inputs, a rating of 1 is �best�, and 5 �worst�. For outputs,
this means that a DMU ranked at position 1 generates more output than is true of a DMU in position 2,
and so on. For inputs, a DMU in position 1 consumes less input than one in position 2.



Table 1
Ratings by criteria

Project no. Outputs Inputs

1 2 3 4 5 6

1 2 4 1 5 2 1
2 1 1 4 3 5 2
3 1 1 1 1 2 1
4 3 3 3 4 3 2
5 4 3 5 5 1 4
6 2 5 1 1 2 2
7 1 4 1 5 4 3
8 1 5 3 3 3 3
9 5 2 4 4 2 5

10 5 4 4 5 5 5
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Regardless of the manner in which such a scale rating is arrived at, the existing DEA model is capable
only of treating the information as if it has cardinal meaning (e.g. something which receives a score of 4 is
evaluated as being twice as important as something that scores 2). There are a number of problems with this
approach. First and foremost, the projects� original data in the case of some criteria may take the form of
an ordinal ranking of the projects. Specifically, the most that can be said about two projects i and j is that i

is preferred to j. In other cases it may only be possible to classify projects as say �high�, �medium� or �low� in
importance on certain criteria. When projects are rated on, say, a 5-point scale, it is generally understood
that this scale merely provides a relative positioning of the projects. In a number of agencies investigated
(for example, hydro electric and telecommunications companies), 5-point scales are common for evaluating
alternatives in terms of qualitative data, and are often accompanied by interpretations such as

1 = Extremely important
2 = Very important
3 = Important
4 = Low in importance
5 = Not important

which are easily understood by management. While it is true that market researchers often treat such scales
in a numerical (i.e. cardinal) sense, no one seriously believes that an �extremely important� classification for
a project should be interpreted literally as meaning that this project rates three times better than one which
is only classified as �important.� The key message here is that many, if not all criteria used to evaluate R&D
projects are qualitative in nature, and should be treated as such. The model presented in the following sec-
tions extends the DEA idea to an ordinal setting, hence accommodating this very practical consideration.

2.2. Efficiency performance of Korean telephone offices

Kim et al. (1999) examine 33 telephone offices in Korea and use the following factors to develop perfor-
mance measures.

Inputs

(1) manpower
(2) operating costs
(3) number of telephone lines



Table 2
Data for telephone offices

DMU no. X1 X2 X3 Y1 Y2 Y3 Y4 Y5

1 239 7.03 158 47.1 16.67 34 28 2
2 261 3.94 163 37.5 14.11 20 26 3
3 170 2.1 90 20.7 6.8 12.6 19 3
4 290 4.54 201 41.8 11.07 6.27 23 4
5 200 3.99 140 33.4 9.81 6.49 30 2
6 283 4.65 214 42.4 11.34 5.16 21 4
7 286 6.54 197 47 14.62 13 9 2
8 375 6.22 314 55.5 16.39 7.31 14 1
9 301 4.82 257 49.2 16.15 6.33 8 3

10 333 6.87 235 47.1 13.86 6.51 6 2
11 346 6.46 244 49.4 15.88 8.87 18 2
12 175 2.06 112 20.4 4.95 1.67 32 5
13 217 4.11 131 29.4 11.39 4.38 33 2
14 441 7.71 214 61.2 25.59 33 16 3
15 204 3.64 163 32.3 9.57 3.65 15 4
16 216 2.24 154 32.8 11.46 9.02 25 2
17 347 5.65 301 59 17.82 8.19 29 1
18 288 4.66 212 42.3 14.52 7.33 24 4
19 185 3.37 178 33 9.46 2.91 7 2
20 242 5.12 270 65.1 24.57 20.7 17 1
21 234 2.52 126 31.6 8.55 7.27 27 2
22 204 4.24 174 32.5 11.15 2.95 22 3
23 356 7.95 299 66 22.25 14.9 13 2
24 292 4.52 236 50 14.77 6.35 12 3
25 141 5.21 63 21.5 9.76 16.3 11 2
26 220 6.09 179 47.9 17.25 22.1 31 2
27 298 3.44 225 42.4 11.14 4.25 4 2
28 261 4.3 213 41.7 11.13 4.68 20 5
29 216 3.86 156 31.6 11.89 10.5 3 3
30 171 2.45 150 24.1 9.08 2.6 10 5
31 123 1.72 61 12 4.78 2.95 5 1
32 89 0.88 42 6.4 3.18 1.48 2 5
33 109 1.35 57 10.6 3.43 2 1 4
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Outputs

(1) local revenues
(2) long distance revenues
(3) international revenues
(4) operation/maintenance level
(5) customer satisfaction

All inputs and outputs (1), (2), (3) are quantitative, and can be used in the DEA framework in the usual
way. Output #4 is, however, ordinal and provides a complete ranking of the 33 DMUs. Output #5 is a cat-
egorization of the DMUs on a 5-point Likert scale. Table 2 displays the data.
3. Modeling Likert scale data: Continuous projection

The above problem typifies situations in which pure ordinal data or a mix of ordinal and numerical data
are involved in the performance measurement exercise. To cast this problem in a general format, consider
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the situation in which a set of N decision making units (DMUs), k = 1, . . ., N are to be evaluated in terms
of R1 numerical outputs, R2 ordinal outputs, I1 numerical inputs, and I2 ordinal inputs. Let Y 1

k ¼ ðy1
rkÞ; Y 2

k ¼
ðy2

rkÞ denote the R1-dimensional and R2-dimensional vectors of outputs, respectively. Similarly, let X 1
k ¼

ðx1
ikÞ and X 2

k ¼ ðx2
ikÞ be the I1- and I2-dimensional vectors of inputs, respectively.

In the situation where all factors are quantitative, the conventional radial projection model for measur-
ing DMU efficiency is expressed by the ratio of weighted outputs to weighted inputs. Adopting the general
variable returns to scale (VRS) model of Banker et al. (1984), the efficiency of DMU �0� follows from the
solution of
e0 ¼ max l0 þ
X
r2R1

l1
r y1

r0 þ
X
r2R2

l2
r y2

r0

 ! X
i2I1

t1
i x1

i0 þ
X
i2I2

t2
i x2

i0

 !,

s:t: l0 þ
X
r2R1

l1
r y1

rk þ
X
r2R2

l2
r y2

rk

 ! X
i2I1

t1
i x1

ik þ
X
i2I2

t2
i x2

ik

 !,
6 1; all k; ð3:1Þ

l1
r ; l

2
r ; t

1
i ; t

2
i P e; all r; i:
Problem (3.1) is convertible to the linear programming format:
e0 ¼ max l0 þ
X
r2R1

l1
r y1

r0 þ
X
r2R2

l2
r y2

r0

s:t:
X
i2I1

t1
i x1

i0 þ
X
i2I2

t2
i x2

i0 ¼ 1;

l0 þ
X
r2R1

l1
r y1

rk þ
X
r2R2

l2
r y2

rk �
X
i2I1

t1
i x1

ik �
X
i2I2

t2
i x2

ik 6 0; all k;

l1
r ; l

2
r ; t

1
i ; t

2
i P e; all r; i;

ð3:2Þ
whose dual is given by
min h� e
X

r2R1[R2

sþr � e
X

i2I1[I2

s�i

s:t:
XN

k¼1

kky1
rk � sþr ¼ y1

r0; r 2 R1;

XN

n¼1

kky2
rk � sþr ¼ y2

r0; r 2 R2;

hx1
i0 �

XN

k¼1

kkx1
ik � s�i ¼ 0; i 2 I1;

hx2
i0 �

XN

k¼1

kkx2
ik � s�i ¼ 0; i 2 I2;

XN

k¼1

kk ¼ 1;

kk; sþr ; s
þ
i P 0; all k; r; i; h unrestricted:

ð3:20Þ
To place the problem in a general framework, assume that for each ordinal factor (r 2 R2, i 2 I2), a DMU k

can be assigned to one of L rank positions, where L 6 N. As discussed earlier, L = 5 is an example of an
appropriate number of rank positions in many practical situations. We point out that in certain application
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settings, different ordinal factors may have different L-values associated with them. For exposition pur-
poses, we assume a common L-value throughout. We demonstrate later that this represents no loss of
generality.

One can view the allocation of a DMU to a rank position ‘ on an output r, for example, as having
assigned that DMU an output value or worth y2

r (‘). The implementation of the DEA model (3.1) (and
(3.2)) thus involves determining two things:

(1) multiplier values l2
r , t2

i for outputs r 2 R2 and inputs i 2 I2;
(2) rank position values y2

r ð‘Þ, r 2 R2, and xi2ð‘Þ, i 2 I2, all ‘.

In this section we show that the problem can be reduced to the standard VRS model by considering (1) and
(2) simultaneously.

To facilitate development herein, define the L-dimensional unit vectors crk = (crk(‘)), and dik = (dik(‘))
where
crkð‘Þ ¼
1 if DMU k is ranked in ‘th position on output r;

0 otherwise;

�

dikð‘Þ ¼
1 if DMU k is ranked in ‘th position on input i;

0 otherwise:

�

For example, if a 5-point scale is used, and if DMU #1 is ranked in ‘ = 3rd place on ordinal output r = 5,
then c51(3) = 1, c51(‘) = 0, for all other rank positions ‘. Thus, y2

51 is assigned the value y2
5ð3Þ, the worth to

be credited to the 3rd rank position on output factor 5. It is noted that y2
rk can be represented in the form
y2
rk ¼ y2

r ð‘rkÞ ¼
XL

‘¼1

y2
r ð‘Þcrkð‘Þ;
where ‘rk is the rank position occupied by DMU k on output r. Hence, model (3.2) can be rewritten in the
more representative format:
e0 ¼ max l0 þ
X
r2R1

l1
r y1

r0 þ
X
r2R2

XL

‘¼1

l2
r y2

r ð‘Þcr0ð‘Þ

s:t:
X
i2I1

t1
i x1

i0 þ
X
i2I2

XL

‘¼1

t2
i x2

i ð‘Þdi0ð‘Þ ¼ 1;

l0 þ
X
r2R1

l1
r y1

rk þ
X
r2R2

XL

‘¼1

l2
r y2

r ð‘Þcrkð‘Þ �
X
i2I1

t1
i x1

ik �
X
i2I2

XL

‘¼1

t2
i x2

i ð‘Þdikð‘Þ 6 0; all k;

fY 2
r ¼ ðy2

r ð‘ÞÞ;X 2
i ¼ ðx2

i ð‘ÞÞg 2 W;

l1
r ; t

1
i P e:

ð3:3Þ
In (3.3) we use the notation W to denote the set of permissible worth vectors. We discuss this set below.
It must be noted that the same infinitesimal e is applied here for the various input and output multipliers,

which may, in fact, be measured on scales that are very different from another. If two inputs are, for exam-
ple, x1

i1k representing �labor hours�, and x1
i2k representing �available computer technology�, the scales would

clearly be incompatible. Hence, the likely sizes of the corresponding multipliers t1
i1, t1

i2 may be similarly dif-
ferent. Thrall (1996) has suggested a mechanism for correcting for such scale incompatibility, by applying a
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penalty vector G to augment e, thereby creating differential lower bounds on the various ti, lr. Proper choice
of G can effectively bring all factors to some form of common scale or unit. For simplicity of presentation
we will assume the cardinal scales for all r 2 R1, i 2 I1 are similar in dimension, and that G is the unit vec-
tor. The more general case would proceed in an analogous fashion.

3.1. Permissible worth vectors

The values or worths fy2
r ð‘Þg, fx2

i ‘Þg, attached to the ordinal rank positions for outputs r and inputs i,
respectively, must satisfy the minimal requirement that it is more important to be ranked in ‘th position
than in the (‘ + 1)st position on any such ordinal factor. Specifically, y2

r ð‘Þ > y2
r ð‘þ 1Þ and x2

i ð‘Þ <
x2

i ð‘þ 1Þ. That is, for outputs, one places a higher weight on being ranked in ‘th place than in (‘ + 1)st
place. For inputs, the opposite is true. A set of linear conditions that produce this realization is defined
by the set W, where
W ¼ ðY 2
r ;X

2
r Þ jy2

r ð‘Þ � y2
r ð‘þ 1ÞP e; ‘ ¼ 1; . . . ; L� 1; y2

r ðLÞP e; x2
i ð‘þ 1Þ � x2

i ð‘ÞP eg;
�

‘ ¼ 1; . . . ; L� 1; x2
i ð1ÞP e
Arguably, e could be made dependent upon ‘ (i.e. replace e by e‘). It can be shown, however, that all results
discussed below would still follow. For convenience, we, therefore, assume a common value for e. We now
demonstrate that the nonlinear problem (3.3) can be written as a linear programming problem.

Theorem 3.1. Problem (3.3), in the presence of the permissible worth space W, can be expressed as a linear

programming problem.

Proof. In (3.3), make the change of variables w1
r‘ ¼ l2

r y2
r ð‘Þ, w2

i‘ ¼ t2
i x2

i ð‘Þ.
It is noted that in W, the expressions y2

r ð‘Þ � y2
r ð‘þ 1ÞP e; y2

r ðLÞP e can be replaced by
l2
r y2

r ð‘Þ � l2
r y2

r ð‘þ 1ÞP l2
r e; l

2
r y2

r l
2
r e; which becomes w1

r‘ � w1
r‘þ1 P l2

r e;w
2
rL P l2

r e:
A similar conversion holds for the x2
i ð‘Þ. Problem (3.3) now becomes
e0 ¼ max l0 þ
X
r2R1

l1
r y1

r0 þ
X
r2R2

XL

‘¼1

w1
r‘cr0ð‘Þ

s:t:
X
i2I1

t1
i x1

i0 þ
X
i2I2

XL

‘¼1

w2
i‘di0ð‘Þ ¼ 1; l0 þ

X
r2R1

l1
r y1

rk þ
X
r2R2

XL

‘¼1

w1
rlcrkð‘Þ;

�
X
i2I1

t1
i x1

ik �
X
i2I2

XL

‘¼1

w2
i‘dikð‘Þ 6 0; all k;

w1
r‘ � w1

r‘þ1 P l2
r e; ‘ ¼ 1; . . . ;L� 1; all r 2 R2;

w1
rL P l2

r e; all r 2 R2;

w2
i‘þ1 � w2

i‘ P t2
i e; ‘ ¼ 1; . . . ; L� 1; all i 2 I2;

w2
i1 P t2

i e; all i 2 I2

l1
r ; t

1
i P e; all r 2 R1; i 2 I1; l2

r ; t
2
i P e; all r 2 R2; i 2 I2:

ð3:4Þ
Problem (3.4) is clearly in linear programming problem format. h
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We state without proof the following theorem.

Theorem 3.2. At the optimal solution to (3.4), l2
r ¼ t2

i ¼ e for all r 2 R2, i 2 I2.

Problem (3.4) can then be expressed in the form:
e0 ¼ max l0 þ
X
r2R1

l1
r y1

r0 þ
X
r2R2

XL

‘¼1

w1
r‘cr0ð‘Þ

s:t:
X
i2I1

t1
i x1

i0 þ
X
i2I2

XL

‘¼1

w2
i‘di0ð‘Þ ¼ 1;

l0 þ
X
r2R1

l1
r y1

rk þ
X
r2R2

XL

‘¼1

w1
r‘crkð‘Þ �

X
i2I1

t1
i x1

ik �
X
i2I2

XL

‘¼1

w2
i‘dikð‘Þ 6 0; all k;

� w1
r‘ þ w1

r‘þ1 6 �e2; ‘ ¼ 1; . . . ; L� 1; all r 2 R2;

� w1
rL 6 �e2; all r 2 R2;

� w2
i‘þ1 þ w2

i‘ 6 �e2; ‘ ¼ 1; . . . ; L� 1; all i 2 I2;

� w2
i1 6 �e2; all i 2 I2;

l1
r ; t

1
i P e; r 2 R1; i 2 I1:

ð3:5Þ
It can be shown that (3.5) is equivalent to the standard VRS model. First we form the dual of (3.5),
min h� e
X
r2R1

sþr � e
X
i2I1

s�i e2
X
r2R2

XL

‘¼1

a1
r‘ � e2

X
i2I2

XL

‘¼1

a2
i‘

s:t:
XN

k¼1

y1
rk � sþr ¼ y1

r0; r 2 R1;

hx1
i0 �

XN

k¼1

kkx1
ik � s�i ¼ 0; i 2 I1;

PN
k¼1

kkcrkð1Þ � a1
r1 ¼ cr0ð1Þ;

PN
k¼1

kkcrkð2Þ þ a1
r1 � a1

r2 ¼ cr0ð2Þ;

..

.

PN
k¼1

kkcrkðLÞ þ a1
rL�1 � a1

rL ¼ cr0ðLÞ;

9>>>>>>>>>>=
>>>>>>>>>>;

r 2 R2;

di0ðLÞh�
PN
k¼1

kkdikðLÞ � a2
iL ¼ 0;

di0ðL� 1Þh�
PN
k¼1

kkdikðL� 1Þ þ a2
iL � a2

iL�1 ¼ 0;

..

.

di0ð1Þh�
PN
k¼1

kkdikð1Þ þ a2
i2 � a2

i1 ¼ 0;

9>>>>>>>>>>>=
>>>>>>>>>>>;

i 2 I2;

XN

k¼1

kk ¼ 1;

kk; sþr ; s
�
i ; a

1
r‘; a

2
i‘ P 0; h unrestricted:

ð3:50Þ
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Here, we use {kk} as the standard dual variables associated with the N ratio constraints, and the variables
fa2

i‘; a
1
r‘g are the dual variables associated with the rank order constraints defined by W. The slack variables

sþr ; s
�
i correspond to the lower bound restrictions on l1

r ; t
1
i .

Now, perform simple row operations on (3.50) by replacing the ‘th constraint by the sum of the first ‘
constraints. That is, the second constraint (for those r 2 R2 and i 2 I2) is replaced by the sum of the first
two constraints, constraint 3 by the sum of the first three, and so on. Letting
crkð‘Þ ¼
Xl

n¼1

crkcrkð1Þ þ crkð2Þ þ � � � þ crkð‘Þ
and
dikð‘Þ ¼
XL

n¼‘
dikdikðLÞ þ dikðL� 1Þ þ � � � þ dikð‘Þ;
problem (3.50) can be rewritten as
min h� e
X
r2R1

sþr � e
X
i2I1

s�i e2
X
r2R2

XL

l¼1

a1
rl � e2

X
i2I2

XL

l¼1

a2
il

s:t:
XN

k¼1

kky1
rk � sþr ¼ y1

r0; r 2 R1;

hx1
i0 �

XN

k¼1

kkx1
ik � s�i ¼ 0; i 2 I1;

XN

k¼1

kkcrkð‘Þ � a1
r‘ ¼ cr0ð‘Þ; r 2 R2; ‘ ¼ 1; . . . ; L;

hdi0ð‘Þ �
XN

k¼1

kkdikð‘Þ � a2
il ¼ 0; i 2 I2; ‘ ¼ 1; . . . ; L;

XN

k¼1

kk ¼ 1;

kk; sþr ; s
�
i ; a

1
rl; a

2
il P 0; all i; r; ‘; k; h unrestricted in sign:

ð3:60Þ
The dual of (3.60) has the format:
e0 ¼ max l0 þ
X
r2R1

l1
r y1

r0 þ
X
r2R2

XL

‘¼1

w1
r‘cr0ð‘Þ

s:t:
X
i2I1

t1
i x1

i0 þ
X
i2I2

XL

‘¼1

w2
i‘di0ð‘Þ ¼ 1;

l0 þ
X
r2R1

l1
r yrk þ

X
r2R2

XL

l¼1

w1
r‘crkð‘Þ �

X
i2I1

t1
i x1

ik �
X
i2I2

XL

‘¼1

w2
ildikð‘Þ 6 0; all k;

l1
r ; t

1
i P e;w1

r‘;w
2
i‘ P e2;

ð3:6Þ
which is a form of the VRS model. The slight difference between (3.6) and the conventional VRS model, is
the presence of a different e (i.e., e2) relating to the multipliers w1

r‘, w2
i‘, than is true for the multipliers l1

r , t1
i .

It is observed that in (3.6
0
) the common L-value can easily be replaced by criteria specific values (e.g. Lr for

output criterion r). The model structure remains the same, as does that of model (3.6). Of course, since the
intention is to have an infinitesimal lower bound on multipliers (i.e., e = 0), one can, from the start, restrict
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l1
r ; t

1
i P e2 and l2

r ; t
2
i P e:
This leads to a form of (3.6) where all multipliers have the same infinitesimal lower bounds, making (3.6)
precisely a VRS model.

3.2. Criteria importance

The presence of ordinal data factors results in the need to impute values y2
r ð‘Þ; x2

i ð‘Þ to outputs and
inputs, respectively, for DMUs that are ranked at positions on an L-point Likert or ordinal scale.
Specifically, all DMUs ranked at that position will be credited with the same �amount� y2

r ð‘Þ of output r

(r 2 R2) and x2
i ð‘Þ of input i (i 2 I2).

A consequence of the change of variables undertaken above, to bring about linearization of the other-
wise nonlinear terms, e.g., w1

r‘ ¼ l2
r y2

r ð‘Þ, is that at the optimum, all l2
r ¼ e2; t2

i ¼ e2. Thus, all of the ordinal
criteria are relegated to the status of being of equal importance. Arguably, in many situations, one may wish
to view the relative importance of these ordinal criteria (as captured by the l2

r ; t
2
i Þ in the same spirit as we

have viewed the data values fy2
rkg. That is, there may be sufficient information to be able to rank these cri-

teria. Specifically, suppose that the R2 output criteria can be grouped into L1 categories and the I2 input
criteria into L2 categories.

Now, replace the variables l2
r by l2(m), and t2

i by t2(n), and restrict:
l2ðmÞ � l2ðmþ 1ÞP e; m ¼ 1; . . . ; L1 � 1;

l2ðL1ÞP e;
and
t2ðnÞ � t2ðnþ 1ÞP e; n ¼ 1; . . . ; L2 � 1;

t2ðL2ÞP e:
Letting mr denote the rank position occupied by output r 2 R2, and ni the rank position occupied by input
i 2 I2, we define the change of variables
w1
r‘ ¼ l2ðmrÞy2

r ð‘Þ;

w2
i‘ ¼ t2ðniÞx2

i ð‘Þ:

The corresponding version of model (3.4) would see the lower bound restrictions l2

r , t2
i P e replaced by the

above constraints on l2(m) and t2(n). Again, arguing that at the optimum in (3.4), these variables will be
forced to their lowest levels, the resulting values of the l2(m), t2(n) will be
l2ðmÞ ¼ ðL1 þ 1� mÞe; t2ðnÞ ¼ ðL2 þ 1� nÞe:

This implies that the lower bound restrictions on w1

r‘;w
2
i‘ become
w1
r‘ P ðL1 þ 1� mrÞe2; w2

i‘ P ðL2 þ 1� niÞe2:
3.3. Solutions to applications

3.3.1. R&D project efficiency evaluation

When model (3.6 0) is applied to the data of Table 1, the efficiency scores obtained are as shown in
Table 3.



Table 3
Efficiency scores (non-ranked criteria)

Project 1 2 3 4 5 6 7 8 9 10
Score 0.76 0.73 1.00 0.67 1.00 0.82 0.67 0.67 0.55 0.37

Table 4
Efficiency scores (ranked criteria)

Project 1 2 3 4 5 6 7 8 9 10
Score 0.71 0.72 1.00 0.60 1.00 0.80 0.62 0.63 0.50 0.35
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Here, projects 3 and 5 turn out to be �efficient�, while all other projects are rated well below 100%. In this
particular analysis, e was chosen as 0.03. In another run (not shown here) where e = 0.01 was used, projects
3, 5 and 6 received ratings of 1.00, while all others obtained somewhat higher scores than those shown in
Table 3. When a very small value of e (e = 0.001) was used, all except one of the projects was rated as
efficient.

Clearly this example demonstrates the same degree of dependence on the choice of e as is true in the stan-
dard DEA model, see Ali and Seiford (1993).

From the data in Table 1 it might appear that only project 3 should be efficient since 3 dominates project
5 in all factors except for the second input where project 3 rates fourth while project 5 rates fifth. As is char-
acteristic of the standard ratio DEA model, a single factor can produce such an outcome. In the present
case this situation occurs because w2

25 ¼ 0:03 while w2
24 ¼ 0:51. Consequently, project 5 is accorded an �effi-

cient� status by permitting the gap between w2
24 and w2

25 to be (perhaps unfairly) very large. Actually, the set
of multipliers which render project 5 efficient also constitute an optimal solution for project 3.

If we further constrain the model by implementing criteria importance conditions as defined in the pre-
vious section, the relative positioning of the projects changes as shown in Table 4.

Hence, criteria importance restrictions can have an impact on the efficiency status of the projects.

3.4. Evaluation of telephone office efficiency

The data of Table 2 has been evaluated using Model (3.60). We note again that both ordinal and numer-
ical data are present. Both CRS and VRS models were applied, the results of which are presented in Table
5. Initially, in applying DEA in this application, no attempt was made to impose constraints on multipliers.
Under the CRS structure, approximately half of the offices (17 of the 33) are declared efficient. With the
VRS model, the number of efficient units climbs to 25 out of 33. When criteria importance is introduced,
the efficiency status (efficient versus inefficient) changes for some units. As well, the relative sizes of effi-
ciency scores change. Note, for example, that the relative positions of offices 10 and 11 are reversed under
the constrained VRS model versus those assumed in the unconstrained model. As well, only 15 of the offices
(rather than 25) are rated as being efficient.

Two very interesting phenomena characterize DEA problems containing ordinal data. If one examines in
detail the outputs from the analysis of the example data, two observations can be made. First, it is the case
that h = 1 for each project (whether efficient or inefficient). This means that each project is either on the
frontier proper or an extension of the frontier. Second, if one were to use the CRS rather than VRS model,
it would be observed that

P
kkk ¼ 1 for each project. The implication would seem to be that the two models

(CRS and VRS) are equivalent in the presence of ordinal data. Moreover, since h = 1 in all cases, these
models are as well equivalent to the additive model of Charnes et al. (1985). The following two theorems
prove these results for the general case.



Table 5
Efficiency scores

DMU no. CRS score VRS score VRS score-constrained

1 1 1 1
2 1 1 1
3 1 1 1
4 0.927 1 0.973
5 1 1 0.921
6 0.907 0.994 0.906
7 0.848 0.849 0.823
8 0.668 0.670 0.644
9 0.848 0.970 0.885

10 0.617 0.747 0.731
11 0.763 0.815 0.716
12 1 1 0.915
13 1 1 1
14 1 1 1
15 1 1 1
16 1 1 0.886
17 0.898 1 1
18 0.928 1 0.935
19 0.993 0.993 0.961
20 1 1 1
21 1 1 1
22 1 1 1
23 0.846 1 1
24 0.918 1 0.904
25 1 1 1
26 1 1 0.955
27 0.824 0.937 0.926
28 0.954 1 0.919
29 0.949 1 1
30 1 1 1
31 1 1 0.907
32 1 1 1
33 0.962 1 1
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Theorem 3.3. In problem (3.60), if I2 is non-empty, h = 1 at the optimum.

Proof. By definition dikð‘Þ ¼
PL

n¼‘dikðnÞ. Thus dikð1Þ ¼ 1 for all k, and for any ordinal input i. From the

constraint set of (3.60), if
PN

k¼1kk ¼ 1, then since hdi0ð1ÞP
PN

k¼1kkdikð1Þ and since
PN

k¼1kkdikð1Þ ¼ 1 (given

that all members of dikð1Þ
� �N

k¼1
equal 1), it follows that hdi0ð1ÞP 1. But since di0ð1Þ ¼ 1, then h P 1 mean-

ing that at the optimum h = 1. h

This rather unusual property of the DEA model in the presence of ordinal data is generally explainable
by observing the dual form (3.5). It is noted that e2 plays the role of discriminating between the levels of
relative importance of consecutive rank positions. If in the extreme case e = 0, then any one rank position
becomes as important as any other. This means that regardless of the rank position occupied by a DMU �0�,
that position can be credited with a higher weight, than those positions assumed by the peers of that DMU.
Hence, every DMU will be deemed technically efficient. It is only the presence of positive gaps (defined by
e2) between rank positions that renders a DMU inefficient via the slacks.
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Theorem 3.4. If R2 and I2 are both non-empty, then in the CRS version of problem (3.60),
PN

k¼1kk ¼ 1 at the

optimum.

Proof. Reconsider problem (3.60), but with the constraint
PN

k¼1kk ¼ 1 removed. As in Theorem 3.3, the
constraint
hdi0ð1Þ ¼ di0ð1ÞP
XN

k¼1

kkdikð1Þ
holds. But, since dikð1Þ ¼ 1 for all k, then it is the case that
PN

k¼1kk 6 1.
On the output side, however, �crkðLÞ ¼ 1 for all k, and any ordinal output r. But, since
XN

k¼1

kkcrkðLÞP cr0ðLÞ;
it follows that
PN

k¼1kk P 1. Thus,
PN

k¼1kk ¼ 1. h

From Theorem 3.4, it follows that the VRS and CRS models are equivalent. Moreover, from Theorem
3.3, one may view these two models as equivalent to the additive model in that the objective function of
(3.60) is equivalent to maximizing the sum of all slacks.

It should be pointed out that the projection to the efficient frontier in model (3.6) treats the Likert scale
[1, L] as if it were a continuum, rather than as consisting of a set of discrete rank positions. Specifically, at
the optimum in (3.6), any given projected value, e.g. hdi0ð‘Þ � a2

i‘, i 2 I2, is not guaranteed to be one of the
discrete points on the [1, L] scale. For this reason, we refer to (3.6) as a continuous projection model. In this
respect, the model can be viewed as providing a form of upper bound on the extent of reduction that can be
anticipated in the ordinal inputs. Suppose, for example, that at the optimum hdi0ð‘Þ � a2

i‘ ¼ 2:7, a rank

position between the legitimate positions 2 and 3 on an L-point scale. Then, arguably, it is possible for
di0ð‘Þ to be projected only to point 3, not further.

One can, of course, argue that the choosing of a specific number of rank positions L is generally moti-
vated by an inability to be more discriminating (a larger L-value was not practical). At the proposed �effi-
cient� rank position of 2.7, we are claiming that the DMU �0� will be using more input i than a DMU ranked
in 2nd place, but less input than one ranked in 3rd place. Thus, to some extent, this projection automati-
cally has created an L + 1-point Likert scale, where previously the scale had contained only L points. The
projection has permitted us to increase our degrees of discrimination.

In the special case treated by Cooper et al. (1999) where L = N, this issue never arises, as every DMU is
entitled to occupy its own rank position on an N-point scale.

In Section 5 we will re-examine the discrete nature of the L-point scale and propose a model structure
accordingly. In Section 4 we evaluate the IDEA concept of Cooper et al. (1999) in relation to the model
developed above.
4. The continuous projection model and IDEA

Cooper et al. (1999) examine the DEA structure in the presence of imprecise data (IDEA) for certain
factors. Zhu (2003a) and others have extended Cooper et al.�s (1999) earlier model. One particular form
of imprecise data is a full ranking of the DMUs in an ordinal sense. Clearly, representation of rank data
via a Likert scale, with L rank positions, is a generalization of the Cooper et al. (1999) structure wherein
L = N.
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To demonstrate this, we consider a full ranking of the DMUs in an ordinal sense and, to simplify the
presentation, we suppose weak ordinal data can be expressed as (see Cooper et al. (1999); Zhu (2003a))
1 Th
2 As

Coope
et al. (
yr1 6 yr2 6 � � � 6 yrk 6 � � � 6 yrn ðr 2 R2Þ; ð4:1Þ

xi1 6 xi2 6 � � � 6 xik 6 � � � 6 xin ði 2 I2Þ: ð4:2Þ

When the set of W is expressed as (4.1) and (4.2), model (3.5) can be expressed as
e0 ¼ max l0 þ
X
r2R1

l1
r y1

r0 þ
X
r2R2

w1
r0;

s:t:
X
i2I1

t1
i x1

i0 þ
X
i2I2

w2
i0 ¼ 1;

l0 þ
X
r2R1

l1
r y1

rk þ
X
r2R2

w1
rk �

X
i2I1

t1
i x1

ik �
X
i2I2

w2
ik 6 0; all k;

� w1
r;kþ1 þ w1

rk 6 0; k ¼ 1; . . . ;N � 1; all r 2 R2;

� w2
i;kþ1 þ w2

ik 6 0; k ¼ 1; . . . ;N � 1; all i 2 I2; l1
r ; t

1
i P e; r 2 R1; i 2 I1:

ð4:3Þ
We next define t1
rk ¼ t1

i x1
ik ðr 2 R1Þ and t2

ik ¼ l1
r y1

rk ði 2 I1Þ. Then model (4.3) becomes the IDEA model of

Cooper et al. (1999)1:
e0 ¼ max l0 þ
X
r2R1

t2
i0 þ

X
r2R2

w1
r0

s:t:
X
i2I1

t1
r0 þ

X
i2I2

w2
i0 ¼ 1;

l0 þ
X
r2R1

t2
ik þ

X
r2R2

w1
rk �

X
i2I1

t1
rk �

X
i2I2

w2
ik 6 0; all k;

� w1
r;kþ1 þ w1

rk 6 0; k ¼ 1; . . . N � 1; all r 2 R2;

� w2
i;kþ1 þ w2

ik 6 0; k ¼ 1; . . . ;N � 1; all i 2 I2;

t2
ik; t

1
rk P e; r 2 R1; i 2 I1:

ð4:4Þ
We should point out that in the original IDEA model of Cooper et al. (1999), scale transformations on
the input and output data, i.e., x̂ij ¼ xij=maxjfxijg, ŷrj ¼ yrj=maxjfyrjg are done before new variables are
introduced to convert the non-linear DEA model with ordinal data into a linear program. However, as
demonstrated in Zhu (2003a), such scale transformations are unnecessary and redundant. As a result,
the same variable alteration technique is used in Cook et al. (1993, 1996) and Cooper et al. (1999) in con-
verting the non-linear IDEA model into linear programs. The difference lies in the fact that Cook et al.
(1993, 1996) aims at converting the non-linear IDEA model into a conventional DEA model. To use the
conventional DEA model based upon Cooper et al. (1999), one has to obtain a set of exact data from
the imprecise or ordinal data (see Zhu, 2003a).

Based upon the above discussion, we know that the equivalence between the model of Section 3 and the
IDEA model of Cooper et al. (1999) holds for any L if rank data are under consideration.

We finally discuss the treatment of strong versus weak ordinal relations in the model of Section 3.
Note that W in Section 3 actually represents strong ordinal relations.2 Cook et al. (1996) points out that

efficiency scores can depend on e in set W and propose a model to determine a proper e. Zhu (2003b) shows an
e original IDEA model of Cooper et al. (1999) is discussed under the model of Charnes et al. (1978).
shown in Zhu (2003a), the expression in W itself does not distinguish strong from weak ordinal relations if the IDEA model of
r et al. (1999, 2002) is used. Zhu (2003b) proposes a correct way to impose strong ordinal relations in the IDEA model of Cooper
1999, 2002).
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alternative approach in determining e. Further, as shown in Zhu (2003b), part of weak ordinal relations can
be replaced by strong ones without affecting the efficiency ratings and without the need for selecting the e.

Alternatively, we can impose strong ordinal relations as yrk P gyr,k�1 and xik P gxi,k�1 (g > 1).
5. Discrete projection for Likert scale data: An additive model

The model of the previous sections can be considered as providing a lower bound on the efficiency rating
of any DMU. Arguably, as discussed above, projections may be infeasible in a strict ordinal ranking sense.
The DEA structure explicitly implies that points on the frontier constitute permissible targets. Formalizing
the R&D example of the Section 3, suppose that at two efficient (frontier) points k1, k2, it is the case that for
an ordinal input i 2 I2, the respective rank positions are dik1

ð2Þ ¼ 1 and dik2
ð3Þ ¼ 1. That is, DMU k1 is

ranked in 2nd place on input i, while k2 is ranked at 3rd place. Since all points on the line (facet) joining
these two frontier units are to be considered as allowable projection points, then any �rank position�
between a rank of 2 and a rank of 3 is allowed. The DEA structure thus treats the rank range [1, L] as con-
tinuous, not discrete. In a �full� rank order sense, one might interpret the projected point as giving DMU �0�
a ranking just one position worse than that of DMU k1, and thereby displacing k2 and giving it (k2) a rank
that is one position worse than it had prior to the projection. This would mean that all DMUs ranked at or
worse than is true for DMU k2 would also be so displaced.

If DMUs are not rank ordered in the aforementioned sense, but rather are assigned to L (e.g. L = 5)
rank positions, the described displacement does not occur. Specifically, if the ith ordinal input for DMU
�0� is ranked in position ‘ik prior to projection toward the frontier, the only permissible other positions
to which it can move are the discrete points ‘ik � 1, ‘ik � 2, . . . , 1. The modeling of such discrete projec-
tions cannot, however, be directly accomplished within the radial framework, where each data value
(e.g. di0ð‘ÞÞ is to be reduced by the same proportion 1 � h.

The requirement to select from among a discrete set of rank positions (e.g. ‘ik � 1; ‘ik � 2; . . . ; 1Þ can be
achieved from a form of the additive model as originally presented by Charnes et al. (1985). As discussed in
Section (3), however, the VRS (and CRS) model is equivalent to the additive model. Thus, there is no loss
of generality. An integer additive model version of (3.6

0
) can be expressed as follows: (We adopt here an

�invariant� form of the model, by scaling the objective function coefficients by the original data values.)
max
X
r2R1

sþr =y1
r0

� �
þ
X
i2I1

ðs�i =x1
i0Þ þ

X
r2R2

X
‘

a1
r‘

,X
‘

cr0
ð‘Þ

 !
þ
X
i2I2

X
‘

a2
i‘

,X
‘

di0ð‘Þ
 !

ð5:1aÞ

s:t:
XN

k¼1

kky1
rk � sþr ¼ y1

r0; r 2 R1; ð5:1bÞ

XN

k¼1

kkx1
ik þ s�i ¼ x1

i0; i 2 I1; ð5:1cÞ

XN

k¼1

kkcrka
1
r‘ P cr0ð‘Þ; r 2 R2; ‘ ¼ 1; . . . ; L; ð5:1dÞ

XN

k¼1

kkdika
2
i‘ 6 di0ð‘Þ; i 2 I2; ‘ ¼ 1; . . . ; L; ð5:1eÞ

XN

k¼1

kk ¼ 1; ð5:1fÞ

kk P 0; all k; s�i ; s
þ
r P 0; i 2 I1; r 2 R1; a

1
r‘; a

2
r‘ integer; r 2 R2; i 2 I2: ð5:1gÞ
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The imposition of the integer restrictions on the a1
r‘, a2

r‘ is intended to create projections for inputs in I2

and outputs in R2 to points on the Likert scale.

Theorem 5.1. The projections resulting from model (5.1) correspond to points on the Likert scale [1, L] for

inputs i 2 I2 and outputs r 2 R2.

Proof. If for any i 2 I2, a DMU k is ranked at position ‘ik, then by definition
dikð‘Þ ¼
0; ‘ > ‘ik;

1; ‘ 6 ‘ik:

�

Similarly, for r 2 R2, if k is ranked at position ‘rk, then
crkð‘Þ ¼
0; ‘ < ‘rk;

1; ‘ P ‘rk:

�

At the optimum of (5.1) (let fk̂kg denote the optimal kk), the f
P

k k̂kdikð‘ÞgL
‘¼1 form a non-increasing

sequence, i.e.
Pn

k¼1k̂kdik
Pn

k¼1k̂k
�dikð‘þ 1Þ; ‘ ¼ 1; . . . ; L� 1. Similarly, the f

P
kk̂kcrkð‘Þg

L
‘¼1 for a non-

decreasing sequence. In constraint (5.1e), we let ‘ik(i) denote the value of ‘ such that
P

k k̂kdik‘ikðiÞ, andP
kkk

�dikð‘Þ > 0 for ‘ < ‘ik(i). Clearly ‘ik(i) 6 ‘io.
As well, at the optimum
a2
i‘ ¼

0 for ‘ > ‘i0 ;

1 for ‘ikðiÞ
;

0 for ‘ < ‘ikðiÞ
:

8>><
>>:
Hence, if we define the �revised� c and d-values, by ĉr0ð‘Þ ¼ cr0ð‘Þ þ a1
r‘ and d̂i0ð‘Þ ¼ di0ð‘Þ � a2

i‘, then these
define a proper rank position for input i (output (r)) of DMU �0�. That is,
d̂i0ð‘Þ ¼
0; ‘ > ‘ikðiÞ;

1; ‘ 6 ‘ikðiÞ;

�

and
ĉr0f‘Þ ¼
1; ‘ P ‘rkðrÞ;

0; ‘ < ‘rkðrÞ;

�

meaning that the projected rank position of DMU �0� on e.g. input i is ‘ik(i). h

Unlike the radial models of Charnes et al. (1978) and Banker et al. (1984), the additive model does not
have an associated convenient (or at least universally accepted) measure of efficiency. The objective func-
tion of (5.1) is clearly a combination of input and output projections. While various �slacks based� measures
have been presented in the literature (see e.g. Cooper et al., 2000), we propose a variant of the �Russell Mea-
sure� as discussed in Fare and Lovell (1978). Specifically, define
h1
i ¼ 1� s�i =x1

i0; i 2 1; h2
i ¼ 1�

XL

‘¼1

a2
i‘

,XL

‘¼1

di0ð‘Þ; i 2 I2;

/1
r ¼ 1þ sþr =y1

r0; r 2 R1; /2
r ¼ 1þ

XL

‘¼1

a1
r‘

,XL

‘¼1

cr0ð‘Þ; r 2 R2:



Table 6
Efficiency scores b1

Project no. b1 Peers

1 0.73 3
2 0.61 3
3 1.00 3
4 0.53 3
5 1.00 5
6 0.75 3
7 0.57 3
8 0.52 3
9 0.48 3

10 0.30 3
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We define the efficiency measure of DMU �0� to be
b1 ¼
X
i2I1

h1
i þ

X
i2I2

h2
i þ

X
r2R1

ð1=/1
r Þ þ

X
r2R2

ð1=/2
r Þ

" #,
½jI1j þ jI2j þ jR1j þ jR2j�; ð5:2Þ
where jI1j denotes the cardinality of I1, . . .
The following property follows immediately from the definitions of h1

i , h2
i , /1

r , /2
r .

Property 5.1. The efficiency measure b1 satisfies the condition 0 6 b1 6 1.

It is noted that b1 = 1 only in the circumstance that the DMU �0� is actually on the frontier. This means,
of course that if a DMU is not on the frontier, but at the optimum of (5.1) has all a1

i‘, a2
i‘ ¼ 0, it will be

declared inefficient even though it is impossible for it to improve its position on the ordinal (Likert) scale.
An additional and useful measure of ordinal efficiency is
b2 ¼
X
i2I2

h2
i þ

X
r2R2

ð1=/2
r Þ

" #,
½jI1j þ jR2j�: ð5:3Þ
In this case b2 = 1 for those DMUs for which further movement (improvement) along ordinal dimen-
sions is not possible.

5.1. R&D example continued

Continuing the R&D example discussed in Section 3, we apply model (5.1) with the requisite require-
ment that only Likert scale projections are permitted in regard to ordinal factors. Table 6 presents the
results.

As in the analysis of Section 3, all projects except for #3, #5 are inefficient. Interestingly, their relative

sizes (in a rank order sense) agree with the outcomes shown in Table 3 of Section 3.
6. Conclusions

This paper has examined the use of ordinal data in DEA. Two general models are developed, namely,
continuous and discrete projection models. The former aims to generate the maximum reduction in inputs
(input-oriented model), without attention to the feasibility of the resulting projections in a Likert scale
sense. The latter model specifically addresses the need to project to discrete points for ordinal factors.
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We prove that in the presence of ordinal factors, CRS and VRS models are equivalent. As well, it is shown
that in a pure technical efficiency sense, h = 1. Thus, it is only the slacks that render a DMU inefficient in
regard to ordinal factors. The latter also implies that projections in the VRS (and CRS) sense are the same
as those arising from the additive model. This provides a rationale for reverting to the additive model to
facilitate projection in the discrete (versus continuous) model described in Section 5.
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