
Author's personal copy

Decision Support

Super-efficiency DEA in the presence of infeasibility

Hsuan-Shih Lee a,⇑, Ching-Wu Chu a, Joe Zhu b

a Department of Shipping and Transportation Management, National Taiwan Ocean University, No. 2, Pei-Ning Rd., Keelung 202, Taiwan
b School of Management, Worcester Polytechnic Institute, Worcester, MA 01609, USA

a r t i c l e i n f o

Article history:
Received 22 March 2010
Accepted 14 January 2011
Available online 21 January 2011

Keywords:
Data envelopment analysis (DEA)
Infeasibility
Super-efficiency

a b s t r a c t

It is well known that super-efficiency data envelopment analysis (DEA) approach can be infeasible under
the condition of variable returns to scale (VRS). By extending of the work of Chen (2005), the current
study develops a two-stage process for calculating super-efficiency scores regardless whether the stan-
dard VRS super-efficiency mode is feasible or not. The proposed approach examines whether the standard
VRS super-efficiency DEA model is infeasible. When the model is feasible, our approach yields super-effi-
ciency scores that are identical to those arising from the original model. For efficient DMUs that are infea-
sible under the super-efficiency model, our approach yields super-efficiency scores that characterize
input savings and/or output surpluses. The current study also shows that infeasibility may imply that
an efficient DMU does not exhibit super-efficiency in inputs or outputs. When infeasibility occurs, it
can be necessary that (i) both inputs and outputs be decreased to reach the frontier formed by the
remaining DMUs under the input-orientation and (ii) both inputs and outputs be increased to reach
the frontier formed by the remaining DMUs under the output-orientation. The newly developed approach
is illustrated with numerical examples.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Data envelopment analysis (DEA) measures the relative effi-
ciencies of peer decision making units (DMUs) that have multiple
input and outputs. DMUs that receive a score of unity are deemed
as on the DEA (best-practice) frontier. To break the tie of efficient
DMUs, the CCR model of Charnes et al. (1978) is modified by
Andersen and Petersen (1993). This modified CCR model is called
super-efficiency model where a DMU under evaluation is excluded
from the reference set. For inefficient DMUs, the super-efficiency
model yields the identical standard DEA score. However, for effi-
cient DMUs, super-efficiency scores are not less than one under
the assumption of input-orientation, for example.

The CCR model is under the condition of constant returns to
scale (CRS). While the super-efficiency model under CRS does not
suffer the problem of infeasibility, the super-efficiency model un-
der the condition of variable returns to scale (VRS) can be infeasi-
ble. Seiford and Zhu (1999) provide the necessary and sufficient
conditions for infeasibility of super-efficiency models, and further
show that infeasibility must occur in the case of the variable
returns to scale (VRS) super-efficiency model.

A number of studies have tried to solve the problem of VRS
super-efficiency model’s infeasibility. Lovell and Rouse (2003)
suggest using a user-defined scaling factor to make the VRS
super-efficiency model feasible. Yet, as indicated in Cook et al.

(2009), it is possible that Lovell and Rouse’s (2003) approach
assigns the user-defined scaling factor as the super-efficiency score
for all DMUs having infeasible solutions. Cook et al. (2009) develop
a modified VRS super-efficiency model for efficient DMUs that are
infeasible under the standard VRS super-efficiency model. Cook
et al. (2009) further define a super-efficiency score with respect
to both input and output super-efficiencies.

In fact, as pointed out by Chen (2005), one needs to use both in-
put- and output-oriented super-efficiency models to fully charac-
terize the super-efficiency when infeasibility occurs. Chen (2005)
further suggests that one should integrate the input and output
super-efficiency scores by solving both the input- and output-
oriented VRS super-efficiency models.

The current study extends the work of Chen (2005) by proposing
a two-stage super-efficiency calculation. We find that the infeasi-
bility of input-oriented super-efficiency occurs when the outputs
of the evaluated DMU is outside the production possibility set
spanned by the outputs of the remaining DMUs and the infeasibility
of output-oriented super-efficiency occurs when the inputs of the
evaluated DMU is outside the production possibility set spanned
by the inputs of the remaining DMUs. As indicated in Seiford and
Zhu (1999) and Chen (2005), infeasibility in the input-oriented
super-efficiency can indicate that a particular efficient DMU under
evaluation exhibits super-efficiency performance only in outputs.
Infeasibility in the output-oriented super-efficiency can indicate
that a particular efficient DMU under evaluation exhibits super-
efficiency performance only in inputs. Chen (2005) points out that
super-efficiency can be regarded as input saving/output surplus
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achieved by an efficient DMU. Therefore, in the first stage, the
current study seeks to simultaneously test whether a VRS super-
efficiency model is infeasible, and detect output surpluses (input
savings) when infeasibility occurs in the input-oriented (output-
oriented) VRS super-efficiency model. Then, in a second stage
calculation, a modified VRS super-efficiency model is proposed to
calculate the super-efficiency for all the efficient DMUs.

If super-efficiency only exists in inputs (or outputs), then our
modified output-oriented (or input-oriented) super-efficiency
model may actually indicates inefficient performance. In other
words, infeasibility may imply inefficient performance. This is con-
sistent with the findings in Chen (2005) and Cook et al. (2009).

Like the approach in Cook et al. (2009), when infeasibility occurs,
our approach may require that (i) both inputs and outputs be de-
creased to reach the frontier formed by the remaining DMUs under
the input-orientation and (ii) both inputs and outputs be increased
to reach the frontier formed by the remaining DMUs under the out-
put-orientation.

The proposed new model provides VRS super-efficiency scores
that are equivalent to those arising from the VRS super-efficiency
model when feasibility is present. When the VRS super-efficiency
model is infeasible, our new model determines a referent (bench-
mark) DMU formed by the remaining DMUs and yields a score that
characterizes the super-efficiency in inputs and outputs. We also
show that the referent DMU is on the frontier formed by the
remaining DMUs. The current paper proposes ways to fully inte-
grate input and output super-efficiencies when infeasibility pre-
sents. This extends the results of Cook et al. (2009).

The rest of the paper is organized as follows. Section 2 presents
preliminaries for developing the new approach. Section 3 develops
our super-efficiency DEA approach in the presence of infeasibility.
Section 4 applies the newly developed approach to data on the 20
largest Japanese companies and 15 US cities that are used in Chen
(2004) and Cook et al. (2009). We further demonstrate how our
new proposed approach works and what infeasibility implies. Con-
clusions are presented in Section 5.

2. Preliminaries

Suppose we have a set of n DMUs, {DMUj : j = 1,2, . . . ,n}. Let
(xk,yk) denote the input and output vectors of the kth DMU. The
ith input of the kth DMU is denoted as xk

i and the rth output of
the kth DMU is denoted as yk

r .
Arranging the data sets in matrices X = (xj) and Y = (yj)

(j = 1, . . . ,n), the production possibility set spanned by (X,Y) with
VRS can be written as PPS(X,Y) = {(x,y)jXk 6 x,Yk P y,ek = 1,k P 0},
where e denotes a row vector in which all elements are equal to 1.
Without loss of generality, we shall denote a production possibility
set by the capital P throughout the paper. As indicated in the con-
ventional definition of the production possibility set, (x,y) 2 P
means that x can produce y.

Definition 1. Production possibility set of input spanned by X with
VRS is PPS(X) = {xjXk 6 x,ek = 1,k P 0}.

Definition 2. Production possibility set of output spanned by Y
with VRS is PPS(Y) = {yjYk P y,ek = 1,k P 0}.

Definition 3. The input production set that dominates xk is
denoted as DN(xk) = {xjx 6 xk}.

Definition 4. The output production set that dominates yk is
denoted as
DNðykÞ ¼ fyjy P ykg:

Definition 5 (Domination). A point p = (x,y) dominates q = (x0,y0) if
x 6 x0 and y P y0. A point p = (x,y) strictly dominates q = (x0,y0) if
x < x0 and y > y0. A point p = (x,y) semi-strictly dominates q = (x0,y0)
if p = (x,y) dominates q = (x0,y0) and p – q.

Definition 6 (Non-domination). A point p = (x,y) is a non-domi-
nated point in P if there is no point p0 = (x0,y0) in P such that p – p0

and p0 dominates p.

Definition 7 (Pareto y-highest). A point p = (x,y) is said to be Par-
eto y-highest in P if there is no point p0 = (x0,y0) in P other than
p = (x,y) such that y 6 y0 and y – y0.

That a point p = (x,y) in P is said to be Pareto y-highest implies
that some of the y-coordinates of p = (x,y) are largest in compari-
son with the points in P.

Definition 8 (Pareto x-lowest). A point p = (x,y) is said to be Pareto
x-lowest in P if there is no point p0 = (x0,y0) in P other than p = (x,y)
such that x P x0 and x – x0.

That a point p = (x,y) in P is said to be Pareto x-lowest implies
that some of the x-coordinates of p = (x,y) are lowest in compari-
son with the other points in P.

3. Super-efficiency DEA in the presence of infeasibility

The input-oriented VRS super-efficiency model for efficient
DMUk can be expressed as

min h

s:t:
Xn

j¼1
j–k

kjx
j
i 6 hxk

i i ¼ 1;2; . . . ;m

Xn

j¼1
j–k

kjyj
r P yk

r r ¼ 1;2; . . . ; s

Xn

j¼1
j–k

kj ¼ 1

kj P 0; j–k

ð1Þ

It is obvious that (1) is infeasible when yk R PPS(Y) where Y = (yj)
(j = 1, . . . ,n, j – k). Chen (2005) points out that if model (1) is feasi-
ble, then the optimal h⁄ represents the input saving of DMUk com-
pared to the frontier formed by the remaining DMUs. Seiford and
Zhu (1999) and Chen (2005) further point out that infeasibility of
model (1) may be due to the fact that the DMU under evaluation
does not exhibit input saving and only exhibit output super-effi-
ciency, or output surplus. We therefore consider the following lin-
ear programming problem which seeks to determine potential
surpluses in individual outputs.

min
Xs

r¼1

sr

s:t:
Xn

j¼1
j–k

kjyj
r þ sryk

r P yk
r r ¼ 1;2; . . . ; s

Xn

j¼1
j–k

kj ¼ 1

kj P 0; j – k

sr P 0; r ¼ 1;2; . . . ; s

ð2Þ
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We note that model (2) is similar to the Seiford and Zhu’s (1999)
model for testing infeasibility. Our model (2) can be viewed as a
slack-based and units invariant version of Seiford and Zhu’s (1999)
radial model. The SBM proposed by Tone (2001) is similar to Russell
measure (1985,1988) in that both deal with slacks and give an effi-
ciency measure between 0 and 1. Fukuyama and Weber (2009) pro-
posed a directional slacks-based measure of technical inefficiency
with the intention to generalize some of the existing slacks-based
measures of inefficiency. Based on the notion of the range of possible
improvement, Portela et al. (2004) proposed the range directional
model which is translation invariant and units invariant.

Theorem 1. Let s�1; . . . ; s�s
� �

denote a set of optimal solution in (2) .
Then model (1) is feasible if and only if s�r ¼ 0 for r = 1, . . . , s.

Proof. Let k�1; . . . ; k�n; s
�
1; . . . ; s�s

� �
be a set of optimal solution in

model (2). If s�r ¼ 0 for r = 1, . . . ,s, there exists h0 such that

Xn

j¼1
j–k

k�j xj
i 6 h0xk

i i ¼ 1;2; . . . ;m

Xn

j¼1
j–k

k�j yj
r P yk

r r ¼ 1;2; . . . ; s

Xn

j¼1
j–k

k�j ¼ 1

h0 P 0
k�j P 0; j – k

Hence model (1) has feasible solution. If model (1) is feasible, we
have one solution h0; k01; . . . ; k0n

� �
such that

Xn

j¼1
j–k

k0jx
j
i 6 h0xk

i i ¼ 1;2; . . . ;m

Xn

j¼1
j–k

k0jy
j
r P yk

r r ¼ 1;2; . . . ; s

Xn

j¼1
j–k

k0j ¼ 1

h0 P 0
k0j P 0; j – k

Therefore, s�r ¼ 0 for r = 1, . . . ,s are in the optimal solution of (2). h

Theorem 1 indicates that the input-oriented VRS super-effi-
ciency model is infeasible if and only if there exists some s�r > 0.
Note that these s�r yk

r are not the output slacks in the standard
DEA approach, but represent the output surpluses in DMUk com-
pared to the frontier formed by the rest of DMUs.

We then establish the following modified VRS super-efficiency
model which is unit invariant.

min ĥ

s:t:
Xn

j¼1
j–k

kjx
j
i 6 ĥxk

i i ¼ 1;2; . . . ;m

Xn

j¼1
j–k

kjyj
r þ s�r yk

r P yk
r r ¼ 1;2; . . . ; s

Xn

j¼1
j–k

kj ¼ 1

kj P 0; j – k

ð3Þ

where s�1; . . . ; s�s
� �

are optimal solutions in model (2).
Let ĥ� be the optimal solution of (3) and h⁄ be the optimal solu-

tion of (1). If model (1) is feasible, then obviously ĥ� ¼ h�, indicating
that model (3) yields the identical super-efficiency score when
model (1) is feasible.

We next show that projection or benchmark for DMUk is always
on the frontier of the remaining DMUs, and unlike model (1), mod-
el (3) is always feasible.

Theorem 2. The DEA projection or benchmark based upon model (3)
is either (i) a Pareto x-lowest non-dominated point in {(x,y)j(x,y) 2
PPS(X,Y) and y P yk} if yk 2 PPS(Y) or (ii) a Pareto y-highest non-
dominated point in PPS(X,Y) if yk R PPS(Y), where X = (xj) (j = 1, . . . ,n,
j – k) and Y = (yj) (j = 1, . . . ,n, j – k).

Proof. (i) Since yk 2 PPS(Y), model (1) is feasible. Based upon
Theorem 1, if (1) is feasible, then s�r ¼ 0 for r = 1, . . . ,s in (2). Hence
(3) is equivalent to (1).

The projection ðx̂k; ŷkÞ of (xk,yk) can be obtained via model (1) as

x̂k
i ¼

Pn
j¼1
j–k

k�j xj
i and ŷk

r ¼
Pn

j¼1
j–k

k�j yj
r . It is obvious that ŷk P ykand

ðx̂k; ŷkÞ 2 PPSðX;YÞ. Let P = {(x,y)j(x,y) 2 PPS(X,Y) and y P yk}. Then
ðx̂k; ŷkÞ 2 P.

If ðx̂k; ŷkÞ is not a non-dominated point in P, there exists a point
(x0,y0) 2 P such that (x0,y0) dominates ðx̂k; ŷkÞ, indicating that h⁄ is
not the best solution. Therefore, ðx̂k; ŷkÞ is a non-dominated point
in P.

Moreover, ðx̂k; ŷkÞ is a x-lowest point in P. If ðx̂k; ŷkÞ is not a
x-lowest point in P, there exists a point (x0,y0) 2 P such that x0 6 x̂k

and x0 – x̂k, indicating that (x0,y0) is a non-dominated point in P and
h⁄ is not the optimal solution. Therefore, ðx̂k; ŷkÞ is a x-lowest point
in P.

(ii). Let ĥ� be the optimal solution of (3) and s�r be the optimal
solutions of (2). Since yk R PPS(Y), there exist some s�r > 0. The
projection of (xk,yk) can be identified by solving the following
model:

max
Xm

i¼1

s�i þ
Xs

r¼1

sþr

s:t:
Xn

j¼1
j–k

kjx
j
i þ s�i ¼ ĥ�xk

i i ¼ 1;2; . . . ;m

Xn

j¼1
j–k

kjyj
r � sþr þ s�r yk

r ¼ yk
r r ¼ 1;2; . . . ; s

Xn

j¼1
j–k

kj ¼ 1

s�i P 0 i ¼ 1;2; . . . ;m

sþr P 0 r ¼ 1;2; . . . ; s

kj P 0; j – k

Then the projection of (xk,yk) is ðx̂k; ŷkÞ where x̂k
i ¼

Pn
j¼1
j–k

k�j xj
i and

ŷk
r ¼

Pn
j¼1
j–k

k�j yj
r . It is obvious that ðx̂k; ŷkÞ 2 PPSðX;YÞ. If ðx̂k; ŷkÞ is not

a non-dominated point in PPS(X,Y), there exists a point (x0,y0) 2
PPS(X,Y) such that (x0,y0) dominates ðx̂k; ŷkÞ, indicating that either
s�r for r = 1, . . . ,s or ĥ� is not the optimal solution. Therefore, ðx̂k; ŷkÞ
is a non-dominated point in PPS(X,Y). Since s�r0 >0, we have
sþ
�

r0 ¼ 0. Assume there is a point (x0,y0) 2 PPS(X,Y) such that
y0r0 > ŷk

r0 , indicating that sþ
�

r0 > 0, a contradiction. Therefore, (x0,y0)
does not exist. and ðx̂k; ŷkÞ is a y-highest point in PPS(X,Y). h
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Theorem 3. Model (3) is always feasible.

Proof. Let X = (xj) (j = 1, . . . ,n, j – k) and Y = (yj) (j = 1, . . . ,n, j – k).

(A) Assume that (xk,yk) 2 PPS(X,Y), which implies that

xk; yk
� �

2 ðx; yÞjxi P
Xn

j¼1
j–k

kjx
j
i; yr 6

Xn

j¼1
j–k

kjyj
r ;

8>><
>>:

x ¼ ðx1; . . . ; xi; . . . ; xmÞ; y ¼ ðy1; . . . ; yr ; . . . ysÞ;

Xn

j¼1
j–k

kj ¼ 1; kj P 0

9>>=
>>;

In other words, xk
i P

Pn
j¼1
j–k

kjx
j
i and yk

r 6
Pn

j¼1
j–k

kjy
j
r . Hence the model

(2) is feasible and the optimal solution for (2) is s�r ¼ 0 for
r = 1, . . . ,s. Model (3) is also feasible.

(B) Assume that (xk,yk) R PPS(X,Y), which implies that

xk; yk
� �

R ðx; yÞjxi P
Xn

j¼1
j–k

kjx
j
i; yr 6

Xn

j¼1
j–k

kjyj
r ;

8>><
>>:

x ¼ ðx1; . . . ; xi; . . . ; xmÞ; y ¼ ðy1; . . . ; yr ; . . . ysÞ;

Xn

j¼1
j–k

kj ¼ 1; kj P 0

9>>=
>>;

So either 9i :
Pn

j¼1
j–k

kjx
j
i > xk

i or 9r :
Pn

j¼1
j–k

kjy
j
r < yk

r . Hence (2) and (3)

are feasible if h > 1 when 9i :
Pn

j¼1
j–k

kjx
j
i > xk

i or sr > 0 when

9r :
Pn

j¼1
j–k

kjy
j
r < yk

r . h

One would expect that for efficient DMUs, their input-oriented
super-efficiency scores should be greater than one. Such expecta-
tion is realistic for the CRS assumption. Under VRS assumption, be-
cause of the possible infeasibility, such expectation may not be met
due to the fact that an efficient DMU needs to decrease both its in-
puts and outputs to reach the frontier formed by the rest of DMUs.
To further illustrate this point, we consider a simple numerical
example shown in Fig. 1 where we have three efficient DMUs,
A(1,1), B(2,3) and C(4,4).

For DMU C we have infeasibility in model (1), s⁄ = 1/4 in model
(2) and ĥ� ¼ 0:5ð< 1Þ in model (3). This is because DMU B is iden-
tified as its benchmark. To reach DMU B, it has to decrease its
both input and output. It is reasonable to have DMU B’s sup-
per-efficiency score greater than 1 for two reasons. The first is
that DMU B is efficient in the original BCC model. The second is
that DMU B is outside the efficient boundary formed by remain-
ing DMUs as shown in Fig. 1. Note that DMU B is above the hor-
izontal dashed line. If DMU B is moving downward onto the
dashed line, what should the super-efficiency score of DMU B
be? In the original BCC model, a DMU should have its radial score
less than 1 indicating it is inefficient. Therefore, its supper-effi-
ciency should be less than 1 if it is on the dashed line. Based
on the rationale above, we want to devise a composite score so
that the score of a DMU is greater than 1 if it is above the dashed
line and its score will decrease when it is moving downward or
rightward.

To address such an issue, we modify the super-efficiency score
obtained from model (3) in the following manner.

h
^

¼

P
r2R

yk
r

yk
r �s�r yk

r

� �

jRj þ ĥ�; if R – /

ĥ�; if R ¼ /

8>><
>>:

where R ¼ rjs�r > 0
� �

based upon model (2) and jRj is the cardinality
of the set R.

The efficiency measure consists of two parts, in which
P

r2R

yk
r

yk
r �s�r

� �

jRj reflects how far the DMU k is above the dashed efficient

boundary and ĥ� reflects the input excess if it is less than 1 or input
savings if it is greater than 1. When a DMU falls in the area north of
the dashed line in Fig. 1, like unit C, its efficiency of the original BCC
is 1 which implies that its super efficiency should be greater than 1,

which is guaranteed in our measure by

P
r2R

yk
r

yk
r �s�r

� �

jRj . If a DMU is

above the dashed line and we move it to the right horizontally,
its efficiency should decrease. This is reflected by ĥ�

For DMU C, we now have h
^

¼ 11
6 >1, as its modified input-ori-

ented super-efficiency score. For DMU C, when the input-oriented
super-efficiency model (1) is infeasible, from Fig. 1 it is clear that
DMU C does not have input super-efficiency. DMU C only has
super-efficiency in its output. Our above proposed modification
integrates both input and output super-efficiency when infeasibil-
ity occurs. For example, in the original BCC model, the efficiency of
DMU C is 1. The super efficiency of C should be at least 1. Because it
is above horizontal dashed line, the super efficiency of C should be

greater than 1. Since R = {1} and s�1 ¼ 1;

P
r2R

yk
r

yk
r �s�r

� �

jRj ¼
4

4�1ð Þ
1 ¼ 4

3 which

accounts for this. Since DMU C is to the right of its benchmark B
which is the same benchmark obtained by the output-oriented
super efficiency model, there exists an input excess for C. This is re-
flected by ĥ� ¼ 1

2. That is, unit C can achieve more efficiency if it de-
creases its input (moves leftward). If unit C increases its use of
inputs to infinity, ĥ� would approach 0 and its efficiency would de-
crease as expected but remain greater than 1 as well because it is
above the dashed line. If unit C decreases its use of inputs, ĥ� would
increase and its efficiency would increase as expected.

Our composite score is the same as the score of the model (1) if
(1) is feasible and the score will be greater than 1 if (1) is infeasible,
which is shown in the following theorem.

Theorem 4. h
^

¼ ĥ� if (1) is feasible and h
^

> 1 if (1) is infeasible.

1 2 3 4 

(1,1) 

(2,3) 

(4,4) 

1 

2 

3 

4 

A 

C 

B 

X 

Y 

Fig. 1. A simple example.
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Proof. If (1) is feasible, the index set R would be empty according

to Theorem 1. Therefore, h
^

¼ ĥ�. If (1) is infeasible, the index set R
would not be empty according to Theorem 1. Hence

h
^

¼

P
r2R

yk
r

yk
r �s�r yk

r

� �
jRj þ ĥ�. Since

P
r2R

yk
r

yk
r �s�r yk

r

� �
jRj > 1, we have h

^

> 1. h

The economic interpretation of our measure is that if a DMU
moves rightward or downward, its super efficiency will decrease.
So for a DMU to maintain its competitiveness, it had better to move
either leftward or upward. When it moves rightward, ĥ� will de-

crease. When it moves downward,

P
r2R

yrk
yrk�s�r

� 	
jRj will decrease. So h

^

will decrease when either it moves rightward or downward. Our
score gives clues to a DMU when (1) is infeasible that it is outside
the efficient boundary and remains competitive because some of
its outputs outperform the benchmark. It may further enhance
its competitiveness by increasing its outputs (moving upward) or
reducing its inputs (moving leftward).

In a similar manner, we can develop our new output-oriented
VRS super-efficiency model that is always feasible. The standard
output-oriented VRS super-efficiency model can be expressed as

max b

s:t:
Xn

j¼1
j–k

kjx
j
i 6 xk

i i ¼ 1;2; . . . ;m

Xn

j¼1
j–k

kjyj
r P byk

r r ¼ 1;2; . . . ; s

Xn

j¼1
j–k

kj ¼ 1

kj P 0; j – k

ð4Þ

We first solve the following linear programming problem which
seeks to determine potential input savings t�i xk

i

� �
in the efficient

DMUk compared to the frontier formed by the rest of DMUs:

min
Xm

i¼1

ti

s:t:
Xn

j¼1
j–k

kjx
j
i � tixk

i 6 xk
i i ¼ 1;2; . . . ;m

Xn

j¼1
j–k

kj ¼ 1

kj P 0; j – k
ti P 0; i ¼ 1;2; . . . ;m

ð5Þ

Let t�i be a set of optimal solution in model (5). Model (4) is feasible
if and only if t�i ¼ 0 for i = 1, . . . ,m. We then establish the following
new output-oriented VRS super-efficiency model

max b̂

s:t:
Xn

j¼1
j–k

kjx
j
i � t�i xk

i 6 xk
i i ¼ 1;2; . . . ;m

Xn

j¼1
j–k

kjyj
r P b̂yk

r r ¼ 1;2; . . . ; s

Xn

j¼1
j–k

kj ¼ 1

kj P 0; j – k

ð6Þ

If model (4) is feasible, then b� ¼ b̂�. We can also prove that
model (6) is always feasible.

It is likely that when infeasibility occurs in model (4), the out-
put-oriented super-efficiency score from model (6) is greater than
one, indicating that output super-efficiency does not exist. Con-
sider DMU A in Fig. 1.

The output oriented standard super-efficiency model (4) is
infeasible for DMU A. We have t⁄ = 1 in model (5) and
b̂� ¼ 3ð> 1Þ in model (6). This is because DMU A is projected onto
DMU B, and DMU A has to increase both its input and output to
reach DMU B. In other words, DMU A has super efficiency in input,
but not output.

To address this problem, we can define a new output-oriented
super-efficiency score b

^

in the following manner.

1

b
^ ¼

P
i2I

xk
i
þt�

i
xk
i

xk
i

� �

jIj þ 1
b̂�
; if I – /

1
b̂�
; if I ¼ /

8>><
>>:

:

where I ¼ ijt�i > 0
� �

based upon model (5).
We have b

^

¼ 3
7 < 1. In fact, we can prove

Theorem 5. b
^

¼ b̂� if (4) is feasible and b
^

< 1 if (4) is infeasible.

4. Illustration

In this section, we apply our approach to two data sets used in
Chen (2004) and Cook et al. (2009). One consists of the 20 largest
Japanese companies in 1999 (see Table 1). The other consists of
15 of Fortune’s top US cities in 1996 (see Table 2).

For the Japanese companies, the DEA inputs are assets (million
$), equity (million $) and number of employees and the DEA output
is revenue (million $). Either model (1) or model (4) indicates that
5 of them are VRS-efficient (see last two columns in Table 1).
DMU1 is infeasible under input-oriented model (1) and DMU18
is infeasible under output-oriented model (4).

Model (2) shows s�1y1
1 ¼ 609:1 (output surplus) s�1 ¼

�
0:005704Þ for DMU1 under input-orientation, indicating that
model (1) is infeasible. The newly developed super-efficiency
model (3) yields a score of 1.010356 for DMU1. This further indi-
cates that although DMU1 is infeasible under model (1), DMU1
exhibits super-efficiency in both its inputs and outputs. If we
apply the modified super-efficiency score to DMU1, we have
h
^

¼ 2:004653.
We now turn to the output-orientation. For DMU 18, model

(5) shows t�1x18
1 ¼ 34736:5 t�1 ¼ 2:080528

� �
; t�2x18

2 ¼ 1657:7 t�2 ¼
�

2:451856Þ, and t�3x18
3 ¼ 2121 t�3 ¼ 0:58046

� �
(input savings), indi-

cating that model (4) is infeasible. Model (6) yields a score of
3.515413, indicating that DMU 18 does not have super-efficiency
in its output and has super-efficiency in inputs only when infea-
sibility occurs. If we apply b

^

to DMU 18, we get a modified out-
put-oriented super-efficiency score of 0.334589.

The data set for the 15 US cities has three inputs, namely, high-
end housing price (1,000 US $), lower-end housing monthly rental
(US $), and number of violent crimes, and three outputs, namely,
median household income (US $), number of bachelor’s degrees
(million) held by persons in the population, and number of doctors
(thousand).

The last two columns of Table 2 report the super-efficiency
scores from models (1) and (4). It can be seen that 10 cities are effi-
cient. There are seven infeasibility cases. Table 3 reports the results
from our proposed approach.

The results in Table 3 indicate that all cities having no feasible
solutions in model (1) or (4) have super-efficiency in both inputs
and outputs, as indicated by ĥ� > 1 and b⁄ < 1. This conclusion is
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consistent with the results in Cook et al. (2009). Table 3 also re-
ports our modified super-efficiency scores when infeasibility
occurs.

5. Conclusions

The current paper extends Chen (2005) and Cook et al. (2009)
by providing an approach for addressing the infeasibility issue in
the super-efficiency DEA models. Our approach can detect whether

a VRS super-efficiency model is infeasible and the input savings
(output surpluses) of a particular DMU under evaluation. Our
numerical examples show that infeasibility may imply that a
DMU does not exhibit super-efficiency in inputs or outputs,
although sometimes infeasibility indicates super-efficiency in both
inputs and outputs. Our approach is closely related to Cook et al.
(2009) which is designed for DMUs with infeasible solutions. Our
approach is applicable to all DMUs and yields results identical to
the standard VRS super-efficiency model when infeasibility does

Table 2
US cities.

DMU City Houseprice Rental Violent Income B. Degree Doctor Model (1) h⁄ Model (4) b⁄

1 Seattle 586 581 1193.06 46,928 0.6534 9.878 1.44335 0.91458
2 Denver 475 558 1131.64 42,879 0.5529 5.301 1.01593 0.94994
3 Philadelphia 201 600 3468 43,576 1.135 18.2 Infeasible Infeasible
4 Minneapolis 299 609 1340.55 45,673 0.729 7.209 1.22752 0.92081
5 Raleigh 318 613 634.7 40,990 0.319 4.94 1.16766 Infeasible
6 StLouis 265 558 657.5 39,079 0.515 8.5 1.51628 Infeasible
7 Cincinnati 467 580 882.4 38,455 0.3184 4.48 0.94968 1.11483
8 Washington 583 625 3286.7 54,291 1.7158 15.41 Infeasible 0.65172
9 Pittsburgh 347 535 917.04 34,534 0.4512 8.784 1.04529 Infeasible
10 Dallas 296 650 3714.3 41,984 1.2195 8.82 0.92652 1.04910
11 Atlanta 600 740 2963.1 43,249 0.9205 7.805 0.77243 1.22895
12 Baltimore 575 775 3240.75 43,291 0.5825 10.05 0.73827 1.24860
13 Boston 351 888 2197.12 46,444 1.04 18.208 Infeasible 0.75867
14 Milwaukee 283 727 778.35 41,841 0.321 4.665 1.06559 0.97314
15 Nashville 431 695 1245.75 40,221 0.2365 3.575 0.80117 1.14548

Table 1
Japanese companies.

DMU Company Asset Equity Employee Revenue Model (1)h⁄ Model (4) b⁄

1 MITSUI & CO. 50905.3 5137.9 40,000 106793.2 Infeasible 0.98500
2 ITOCHU CORP. 51432.5 2333.8 5775 106184.1 6.69295 0.75890
3 MITSUBISHI CORP. 67553.2 7253.2 36,000 104656.3 0.74248 1.01970
4 TOYOTA MOTOR CORP. 112698.1 47,177 183,879 97387.6 0.4108 1.09660
5 MARUBENI CORP. 49742.9 2704.3 5844 91361.7 0.91739 1.12199
6 SUMITOMO CORP. 41168.4 4351.5 30,700 86,921 1.02091 0.97780
7 NIPPON TELEGRAPH & TEL. 133008.8 47467.1 138,150 74323.4 0.26865 1.43691
8 NISSHO IWAI CORP. 35581.9 1274.4 19,461 66,144 1.14580 0.87120
9 HITACHI LTD. 73,917 21914.2 328,351 60937.9 0.40528 1.75251
10 MATSUSHITA ELECTRIC INDL. 60,639 26988.4 282,153 58361.6 0.47569 1.82989
11 SONY CORP. 48117.4 13930.7 177,000 51,903 0.54156 1.94791
12 NISSAN MOTOR 52842.1 9583.6 39,467 50263.5 0.47975 2.12450
13 HONDA MOTOR 38455.8 13473.8 112,200 47597.9 0.62931 1.69411
14 TOSHIBA CORP. 46,013 8023.3 198,000 40492.7 0.45933 2.39080
15 FUJITSU LTD. 39052.2 8901.6 188,000 40050.3 0.53631 2.04780
16 TOKYO ELECTRIC POWER 110055.8 12157.7 50,558 38869.5 0.18567 2.74748
17 NEC CORP. 38,015 6517.4 157,773 36356.4 0.50901 2.18981
18 TOMEN CORP. 16,696 676.1 3654 30205.3 2.89988 Infeasible
19 JAPAN TOBACCO 17023.6 10816.6 31,000 29612.2 0.98076 1.04570
20 MITSUBISHI ELECTRIC CORP. 31,997 4129.6 116,479 28982.2 0.5218 2.26572

Table 3
Super-efficiency for US cities.

Input-oriented Output-oriented

DMU City Model (3), ĥ⁄ Model (2), Output surplus Adjusted, h
^ Model (6), b̂⁄ Model (5), Input saving Adjusted, b

^

3 Philadelphia 1.908523 s�3 ¼ 0:021172; s�3y3
3 ¼ 0:385326 2.930153 0.453744 t�1 ¼ 0:318408; t�1x3

1 ¼ 64 0.283906

5 Raleigh 1.167662 1.167662 0.953379 t�3 ¼ 0:035922; t�3x5
3 ¼ 22:8 0.479657

6 StLouis 1.516279 1.516279 0.59373 t�1 ¼ 0:196447; t�1x6
1 ¼ 52:05848;

t�2 ¼ 0:098379; t�2x6
2 ¼ 54:89539

0.353147

8 Washington 1.077451 s�1 ¼ 0:206084; s�1y8
1 ¼ 11188:53;

s�2 ¼ 0:323853; s�2y8
2 ¼ 0:555666;

2.446725 0.65171 0.65171

9 Pittsburgh 1.045289 1.045289 0.967668 t�2 ¼ 0:042991; t�2x9
2 ¼ 23 0.481602

13 Boston 1.556343 s�3 ¼ 0:041453; s�3y13
3 ¼ 0:754777 2.599589 0.758664 0.758664

⁄ If model (1) (or (4)) is feasible, we do not report results from model (2) (or (5)).
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not exist. The current study also extends Cook et al. (2009) by fully
incorporating the input saving in all inputs and output surplus in
all outputs.
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