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a b s t r a c t

Conventional data envelopment analysis (DEA) methods assume that input and output variables are con-
tinuous. However, in many real managerial cases, some inputs and/or outputs can only take integer val-
ues. Simply rounding the performance targets to the nearest integers can lead to misleading solutions and
efficiency evaluation. Addressing this kind of integer-valued data, the current paper proposes models that
deal directly with slacks to calculate efficiency and super-efficiency scores when integer values are pres-
ent. Compared with standard radial models, additive (super-efficiency) models demonstrate higher dis-
crimination power among decision making units, especially for integer-valued data. We use an empirical
application in early-stage ventures to illustrate our approach.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Developed by Charnes et al. (1978), data envelopment analysis
(DEA) is an effective approach to measuring the relative efficiency
of peer decision making units (DMUs) with multiple inputs and out-
puts. Standard DEA models assume real values for all inputs and
outputs. However, in many real-world situations, some inputs
and/or outputs can only take integer values. For example, when
applying DEA method to analyze the efficiency for hospitals, inputs
such as the number of doctors and outputs such as the number of
completed surgeries are restricted to non-negative integers. As
pointed out by Kuosmanen and Kazemi Matin (2009), simply
rounding the optimal solution to the nearest whole numbers can
lead to misleading efficiency evaluations and performance targets
in some cases, especially for those small-size DMUs with small in-
put and output scales. Consider a similar example from Kuosmanen
and Kazemi Matin (2009). Suppose a local hospital has 4 full-time
physicians, and the DEA analysis suggests that the efficient bench-
mark for full-time physicians is 3.5. Rounding the reference figure
down to 3 may lead to a shortage in clinical providers to meet the
service standards, while rounding the target up to 4 does not save
any resources even though the hospital is inefficient in DEA.

Lozano and Villa (2006) address the integer-valued issue in DEA
by proposing a mixed integer linear programming (MILP) model
that restricted the computed targets to integers. However, as later
argued by Kuosmanen and Kazemi Matin (2009), this paper has the
following two issues. One is that the theoretical foundation of the
model is ambiguous. It does not comply with the minimum extrap-
olation principle (Banker et al., 1984), which is the foundation of all
DEA models. The other is that Lozano and Villa’s (2006) MILP mod-
el tends to overestimate the efficiency results. To tackle both of the
above problems, Kuosmanen and Kazemi Matin (2009) develop a
new axiomatic foundation for integer-valued DEA models, and
further derive a new production possibility set (PPS) for integer-
valued DEA with constant returns to scale (CRS) by introducing
new axioms of natural disposability and natural divisibility. Based
upon the new axiomatic foundation and PPS, they propose an
improved version of MILP formulation for efficiency assessment
that avoids overestimations of efficiency scores. According to
Kuosmanen and Kazemi Matin (2009), the terms of natural dispos-
ability and natural divisibility are integer-valued versions of the
conventional free disposability and non-increasing returns to scale
axioms, respectively. Later, Kazemi Matin and Kuosmanen (2009)
extend the axiomatic foundation for integer-valued DEA with
CRS in their previous work (Kuosmanen and Kazemi Matin, 2009)
to other situations like variable, non-decreasing and non-
increasing returns to scale. To achieve such a generalization, they
introduce some new axioms. For example, under the assumption
of variable returns to scale (VRS), a new notion of natural convexity
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is introduced which restricts the feasible convex combinations
only to the subset made up of integer-valued points.

The afore-mentioned literature all use standard radial DEA mod-
els to analyze efficiency for integer-valued data. In our empirical
study, we discover that these existing DEA approaches are often
not able to appropriately discriminate among the performance mea-
sures of DMUs. In this paper we take a different approach. We extend
the efficiency analysis for integer-valued data by dealing directly
with input and output slacks, and develop additive integer-valued
efficiency and super-efficiency models. In doing so, we also extend
the slacks-based measures developed by Tone (2001, 2002). For an
efficient DMU, its super-efficiency score is computed based on the
related input and output slacks. This slacks-based efficiency analysis
demonstrates a stronger discriminating power among DMUs,
especially for those classified as efficient. This is a useful feature in
providing decision makers with insights into the performance of
peer DMUs, and in helping carry out further analysis for managerial
decisions. Later, we will illustrate our approach and models through
an empirical study in the financial success of new projects.

This empirical study uses the data collected by the Inventor’s
Assistance Program (IAP) at the Canadian Innovation Center (CIC)
in Waterloo, Canada. We use the same data set from IAP with a
different research perspective from previous literatures such as
Åstebro and Elhedhli (2006). Since evaluating scores provided by
the analysts are integers, we apply our integer-valued efficiency
and super-efficiency analysis to further explore and compare the
potential performance of early-stage ventures. The results illustrate
that efficient projects have a much better chance in financial suc-
cess compared with the entire project pool or inefficient projects.
In the application, we compare the additive efficiency and super-
efficiency with their radial counterparts, and find that efficient
DMUs can be differentiated more explicitly by additive super-
efficiency than by radial super-efficiency which does not consider
slacks.

The rest of this paper is organized as follows. Section 2 proposes
radial and additive DEA models for integer-valued data set. To
further distinguish those efficient DMUs, Section 3 presents radial
and additive super-efficiency DEA models within an integer
context. Section 4 discusses an empirical study in new business
development, with the data collected by IAP at CIC. Section 5
concludes with a summary of our contributions.

2. Radial and additive integer-valued DEA models

2.1. Radial model

Assume that there are n DMUs producing the same set of outputs
by consuming the same set of inputs. Unit j is denoted by DMUj

(j = 1, . . .,n), whose ith input and rth output are denoted by xij

(i = 1, . . .,m) and yrj (r = 1, . . .,s), respectively. Then the input-
oriented efficiency of DMUo with variable returns to scale (VRS) is
evaluated by the following linear program (1) (Banker et al., 1984):

min ho � e
Xm

i¼1

s�io þ
Xs

r¼1

sþro

 !

s:t:
Xn

j¼1

kjxij þ s�io ¼ hoxio; i ¼ 1; . . . ;m

Xn

j¼1

kjyrj � sþro ¼ yro; r ¼ 1; . . . ; s

Xn

j¼1

kj ¼ 1

kj; s�io; s
þ
ro P 0; j ¼ 1; . . . ;n; i ¼ 1; . . . ;m; r ¼ 1; . . . ; s

ð1Þ

where e represents a non-Archimedean infinitesimal.

Suppose that some of the inputs and outputs are restricted to
integer values. We follow the notations used by Kuosmanen and
Kazemi Matin (2009), and denote the subsets of integer-valued
and real-valued inputs, integer-valued and real-valued outputs
by II, INI, OI and ONI, respectively. Obviously, II and INI, as well as
OI and ONI are mutually disjoint, and satisfy II [ INI = {1,2, . . .,m},
OI [ ONI = {1,2, . . .,s}. By changing input-orientation into output-
orientation, we obtain the output-oriented VRS version of Kuosma-
nen and Kazemi Matin’s (2009) mixed integer linear programming
(MILP) model (2) as follows. Here we choose to present the output-
oriented VRS model because it suits better with the features of our
application data set. This will be further explained in Section 4—
the application part

Eff O
o ¼ max ao þ e

X
i2I

s�io þ
X

rNI2ONI

sþrNIo
þ
X
rI2OI

sþrIo
þ
X
rI2OI

~sþrIo

0
@

1
A

s:t: xio � s�io ¼
Xn

j¼1

kjxij; i 2 I

aoyrNIo þ sþrNIo
¼
Xn

j¼1

kjyrNI j; rNI 2 ONI

~yrIo þ sþrI o
¼
Xn

j¼1

kjyrI j; rI 2 OI

aoyrIo þ ~sþrIo
¼ ~yrI o; rI 2 OI

~yrIo 2 Zþ; rI 2 OI

Xn

j¼1

kj ¼ 1

kj P 0; j ¼ 1; . . . ;n

s�io P 0; sþrNIo
P 0; sþrIo

P 0; ~sþrIo
P 0;

i 2 I; rNI 2 ONI; rI 2 OI

ð2Þ

where variables s�io; sþrNI o
; sþrI o

; ~sþrIo
represent the non-radial slacks, ao

represents the output-oriented efficiency for DMUo, while ~yrI o 2 Zþ

is the integer-valued reference point for outputs OI. DMUo is consid-
ered efficient if the optimal value for ao equals one. It is worth not-
ing that the above model (2) distinguishes between two types of
output slacks. The first type of slack variables, denoted by sþrNIo

and sþrIo
, represents the absolute difference between the convex

combination
Pn

j¼1kjyrNI j (or
Pn

j¼1kjyrI j) and the reference point
aoyrNI o (or ~yrI oÞ. The second type denoted by ~sþrI o

, represents the abso-
lute difference between the reference point ~yrI o and the projection
aoyrI o for integer-restricted outputs. We note in particular that ~sþrI o

and sþrI o
are two totally different slack variables concerning output

rI. ~sþrI o
is used to adjust the projection aoyrI o to its integer reference

point ~yrIo, while sþrI o
measures the absolute distance between this

integer reference target ~yrI o and the convex combination
Pn

j¼1kjyrI j,

thus
Pn

j¼1kjyrI j is free from the integer restriction.

2.2. Additive models

Note that the above model (2) and its input-oriented version
only impose integer restrictions either on outputs or inputs. We
can incorporate both in one model by dealing directly with slacks.
By adding the integer requirement in an additive DEA model (Char-
nes et al., 1982), we propose the following model (3), referred to as
the additive integer-valued DEA model.
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q̂�o ¼max q̂o ¼
X

iNI2INI

s�iNIo
þ
X

rNI2ONI

sþrNIo
þ
X
iI2II

~s�iIo þ
X
rI2OI

~sþrI o

s:t: xiNIo � s�iNIo
¼
Xn

j¼1

kjxiNI j; iNI 2 INI

yrNIo þ sþrNIo
¼
Xn

j¼1

kjyrNI j; rNI 2 ONI

~xiI o P
Xn

j¼1

kjxiI j; iI 2 II

xiI o � ~s�iI o ¼ ~xiI o; iI 2 II

~yrIo 6
Xn

j¼1

kjyrI j; rI 2 OI

yrIo þ ~sþrIo
¼ ~yrI o; rI 2 OI

Xn

j¼1

kj ¼ 1; kj P 0; j ¼ 1; . . . ;n

~xiI o; ~yrIo 2 Zþ; iI 2 II; rI 2 OI

s�iNIo
; sþrNIo

;~s�iI o;~s
þ
rI o

P 0; iNI 2 INI; rNI 2 ONI;

iI 2 II; rI 2 OI ð3Þ

In model (3), ~xiI o 2 Zþ and ~yrI o 2 Zþ are the integer-valued targets for
input iI and output rI of DMUo. Non-radial slacks s�iNI o

; sþrNIo
; ~s�iIo; ~sþrIo

represent the actual inputs that can be reduced and actual outputs
that can be increased in order to realize the best feasible target.

Note that as in the standard additive DEA model, model (3) does
not offer an integrated efficiency score between zero and one. One
can, however, define a posteriori efficiency index based upon a set
of optimal solution from model (3). For example, according to the
slacks-based measure of (SBM) efficiency proposed in Tone (2001,

2002), we can similarly define r̂�o ¼
1�1

m

P
iNI2INI s��

iNI o
=xiNI oþ

P
iI2II

~s��
iI o
=xiI o

h i
1þ1

s

P
rNI2ONI sþ�rNI o=yrNI oþ

P
rI2OI ~s

þ�
rI o=yrI o

h i
as the additive efficiency measure for DMUo, where k�j ; j ¼ 1; . . . ;

n
n; s��iNIo

; iNI 2 INI; sþ�rNIo
; rNI 2 ONI; ~s��iIo

; iI 2 II; ~sþ�rIo
; rI 2 OIg is an opti-

mal solution to model (3). Here the additive efficiency score is
computed based upon an optimal solution of the additive model
(3). In the DEA literature, similar posterior efficiency indices have
been developed/defined in an attempt to incorporate slacks after
radial DEA score is obtained. See, for example, Torgersen et al.
(1996), and Chen and Sherman (2004).

In order to make the resulting model unit-invariant, alternative
objective functions can also be used for model (3). One possible
choice could be

ĝ�o ¼max ĝo ¼
1

mþ s

X
iNI2INI

s�iNIo

xiNIo
þ
X

rNI2ONI

sþrNIo

yrNIo
þ
X
iI2II

~s�iI o
xiI o
þ
X
rI2OI

~sþrI o

yrIo

2
4

3
5
ð4Þ

The constraints from model (3) indicate that xiNI o � s��iNIo
¼Pn

j¼1k
�
j xiNI j P 0 for all iNI 2 INI, and xiIo � ~s��iIo

P
Pn

j¼1k
�
j xiI j P 0 for all

iI 2 II, implying that additive efficiency r̂�o falls between zero and
one. It can also be verified that r̂�o is monotone decreasing in input
and output slacks, and a larger value represents a better perfor-
mance in reaching the efficient frontier. DMUo is called additive
efficient if and only if r̂�o ¼ 1, which also implies that all optimal
slacks are zero. Otherwise it is defined as additive inefficient. It is
easy to notice that if a DMU is additive efficient, then it will also
be efficient under model (2).

3. Radial and additive integer-valued super-efficiency models

3.1. Radial super-efficiency model

For DMUs evaluated as efficient by additive model (3), they are
also efficient if evaluated via radial model (2). We then turn to

super-efficiency models to make a further discrimination. The idea
of super-efficiency was first introduced by Andersen and Petersen
(1993). We first consider standard radial super-efficiency models
within an integer context. The resulting output-oriented super-
efficiency for DMUo is assessed by the following VRS model (5).

max aVRS�Super
o þ e

X
i2I

s�io þ
X

rNI2ONI

sþrNIo
þ
X
rI2OI

sþrIo
þ ~sþrI o

� �0
@

1
A

s:t: xio ¼
Xn

j¼1;j–o

kjxij þ s�io; i 2 I

aVRS�Super
o yrNIo ¼

Xn

j¼1;j–o

kjyrNI j � sþrNIo
; rNI 2 ONI

~yrIo ¼
Xn

j¼1;j–o

kjyrI j � sþrIo
; rI 2 OI

aVRS�Super
o yrI o þ ~sþrIo

¼ ~yrI o; rI 2 OI

~yrIo 2 Zþ; rI 2 OI

Xn

j¼1;j–o

kj ¼ 1

kj P 0; j ¼ 1; . . . ;n; j – o

s�io P 0; sþrNIo
P 0; sþrIo

P 0; ~sþrIo
P 0;

i 2 I; rNI 2 ONI; rI 2 OI

ð5Þ

As pointed out by some researchers (e.g., Seiford and Zhu, 1999;
Chen, 2005), radial super-efficiency models under VRS with either
orientation can be infeasible. Infeasibility is also possible to occur
in model (5) when a DMU under evaluation cannot be projected
onto the frontier formed by the rest DMUs. To combat this prob-
lem, we develop a new integer-valued super-efficiency model
without the infeasibility issue.

3.2. Additive super-efficiency models

Suppose DMUo is additive efficient according to model (3). To
obtain its super-efficiency score, we cannot simply modify additive
model (3) by removing DMUo from the reference set. If we do that,
the resulting model may not have a feasible solution (Du et al.,
2010). Therefore, for an additive efficient DMUo, we propose the
following super-efficiency model

â�o ¼min âo ¼
Xm

i¼1

t�io þ
Xs

r¼1

tþro

s:t:
Xn

j¼1;j–o

kjxij 6 xio þ t�io; i ¼ 1; . . . ;m

Xn

j¼1;j–o

kjyrj P yro � tþro; r ¼ 1; . . . ; s

t�iIo; t
þ
rI o
2 Zþ; iI 2 II; rI 2 OI

Xn

j¼1;j–o

kj ¼ 1

kj; t�iNIo
; tþrNIo

P 0; j ¼ 1; . . . ;n; j – o;

iNI 2 INI; rNI 2 ONI

ð6Þ

After DMUo is removed from the reference set of model (3), we
need to modify the constraints and objective of model (3) to get the
corresponding super-efficiency model (6). The constraints should
be modified because, in the super-efficiency model, we need to in-
crease the inputs and decrease the outputs for DMUo to reach the
frontier constructed by the remaining DMUs. We change the objec-
tive from maximization to minimization so that the resulting
model is bounded.
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We can also use a different objective function for model (6) so
that the resulting super-efficiency model is unit-invariant, for
example,

b̂�o ¼min b̂o ¼
1

mþ s

Xm

i¼1

t�io
xio
þ
Xs

r¼1

tþro

yro

 !
ð7Þ

The newly developed additive super-efficiency model (6) success-
fully avoids the infeasibility issue of radial super-efficiency model
(5). This is proved as follows.

Theorem 1. Additive VRS super-efficiency model (6) is always
feasible.

Proof. For any non-negative set of �kj; j ¼ 1; . . . ;n; j – o satisfyingPn
j¼1;j–o

�kj ¼ 1, we define �t�iNI o
¼max xiNIo;

Pn
j¼1;j–o

�kjxiNI j

n o
� xiNIo P 0

for all iNI 2 INI;�tþrNI o
¼ yrNIo �min yrNI o;

Pn
j¼1;j–o

�kjyrNI j

n o
P 0 for all

rNI 2 ONI;�t�iIo ¼max xiIo;
Pn

j¼1;j–o
�kjxiI j

h i
þ 1

n o
� xiIo 2 Zþ for all iI 2 II,

and �tþrIo
¼ yrIo �min yrIo;

Pn
j¼1;j–o

�kjyrI j

h in o
2 Zþ for all rI 2 OI. Here

the operation [a] represents the greatest integer less than a. Then
we obtain xio þ �t�io P

Pn
j¼1;j–o

�kjxij for all i = 1, . . .,m, and

yro � �tþro 6
Pn

j¼1;j–o
�kjyrj for all r = 1, . . .,s, indicating that kj ¼ �kj;

�
j ¼ 1; . . . ;n; j – o; t�io ¼ �t�io; i ¼ 1; . . . ;m; tþro ¼ �tþro; r ¼ 1; . . . ; sg is a

feasible solution to model (6). Therefore, model (6) is always feasi-
ble. h

Let â�o; k�j ; j ¼ 1; . . . ;n; j – o; t��io ; i ¼ 1; . . . ;m; tþ�ro ; r ¼ 1; . . . ; s
n o

be an optimal solution to model (6). Then following the definition
on additive super-efficiency introduced in Du et al. (2010), we use

d̂�o ¼
1
m

Pm

i¼1
xioþt��

ioð Þ=xio

1
s

Ps

r¼1
yro�tþ�roð Þ=yro

P 1 as the additive super-efficiency score for

model (6). Note that d̂�o is monotone increasing in input/output
slacks, indicating that a greater score represent a superior perfor-
mance compared with other efficient units.

In both objective functions (4) and (7) and the definitions for
additive efficiency and super-efficiency, R�i ¼maxjfxijg and
Rþr ¼maxjfyrjg can be used instead of xio, i = 1, . . .,m and
yro,r = 1, . . .,s, respectively. In that way, the positive requirement
on all xio, i = 1, . . .,m and yro, r = 1, . . .,s can be dropped.

4. Application to new business development

4.1. Data description

We use the data collected by the Inventor’s Assistance Program
(IAP) at the Canadian Innovation Centre (CIC) in Waterloo, Canada.
The CIC is a non-profit agency that provides a variety of services to
foster business development involving innovative inventions. Ana-
lysts in the IAP evaluate or judge the commercial quality of specific
ideas and inventions submitted to the program by independent
inventors before they have reached the market. The main purpose
or contribution of this evaluation is to advise the potential entrepre-
neurs on whether and how to continue market-oriented efforts.

Analysts from IAP assess a specific product idea or invention be-
fore its debut on the market with the purpose of giving the potential
entrepreneur advice, where possible for further improvement.
Åstebro and Elhedhli (2006) mention that, to have a project evalu-
ated, the entrepreneur fills out a questionnaire to introduce his/her
background information, to briefly describe the new idea, and to
provide supplementary documentation such as patent applications,
sketches, and test reports. Avoiding personal contact with the
entrepreneurs beyond the provided documentation, analysts from

the IAP evaluated the ideas or inventions on 40 dimensions denoted
by v1–v40. These 40 dimensions cover a wide range of technical fac-
tors, production factors, market factors, and risk factors. In practice,
analysts compare a specific project with similar ones in their vast
library of previous reviews, and then sort the projects into ordinal
rankings: A for very good, B for average, C for exhibiting a critical
flaw (Åstebro and Elhedhli, 2006).

The data for the present study were previously investigated in a
number of studies. For example, Åstebro and Michela (2005) per-
formed a cluster analysis and found that three variables signifi-
cantly affect financial survival, namely, anticipated stable demand,
price required for profitability, and technical product maturity. Fur-
thermore, the degree of competition was also found to have a mar-
ginally significant influence. Later, Åstebro and Elhedhli (2006)
applied the data set to test the ability of the heuristic to replicate
the analysts’ forecasts and to further examine how well this model
predicts project outcomes. Their research results suggest that rea-
sonably simple decision heuristics can perform well in a natural
and rather difficult decision-making context.

Among the variables v1–v40 used by the IAP, several were
dropped due to too many missing observations or changes in def-
initions over time, which disqualify them from use. In addition, to
maintain the differentiating power of DEA models, we control the
output measures within a reasonable number by only selecting
those variables whose correlations with probability of commercial-
ization are larger than 0.10, according to Spearman rank-order cor-
relation results in Åstebro and Elhedhli (2006). Thus, the data used
in the current paper involve 24 variables out of the original 40
evaluated by a three-point linguistic scale (A, B and C). Consider,
for example, the early-stage Project 1. The analysts rate Project 1
on variable v2 (functional performance) as scale A (very good), cor-
responding to score 1. In other words, the analysts believe that Pro-
ject 1 will effectively achieve the intended purpose. By excluding
those projects with missing observations from the original data
set, we finally obtain 490 projects with 436 failures and 54 suc-
cesses spanning the period from 1989 to 1994. The definitions
for all 24 variables used by the IAP, including a grouping of those
variables, are displayed in Appendix A. In Appendix A, 12 of the
24 variables are labeled as market factors, and are further divided
into subcategories of demand (described by 4 variables), acceptabil-
ity (described by 4 variables), competition (described by 1 variable),
and effort (described by 3 variables). The other 12 variables are la-
beled as technical factors (described by 3 variables), production fac-
tors (described by 3 variables), or risk factors (described by 6
variables). For a more detailed description on the factors and vari-
ables, refer to Åstebro and Gerchak (2001), Åstebro and Michela
(2005), and Åstebro and Elhedhli (2006). These 24 variables reflect
various angles analysts have taken to evaluate a specific innova-
tion, and play an important role in determining business survival.
Take the trend of demand for example. The greater the demand
growth is, the greater the sales opportunities are, and thus the
greater the chance for profitability is. Project 73 is a good example
to demonstrate this. Analysts believe that the demand for Project
73 will be expected to rise in the lifetime of this idea, and give scale
A (or score 1) on variable v13 (trend of demand). Later this project
did in fact experience commercial success.

In previous studies on this early-stage business application, those
24 variables are given numerical values of�1, 0 or 1, corresponding
to scale C, B or A. However, an invention or project could sometimes
be evaluated as C+, B�, B+, or A�, together with C, B, A consisting a 7-
point scale. Therefore, intermediate values for those assessments are
assigned correspondingly, namely, �2/3 for C+, �1/3 for B�, 1/3 for
B+, and 2/3 for A�. For a further and detailed explanation on the
data description and collection, readers are referred to Åstebro and
Michela (2005) and Simons and Åstebro (2010).
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4.2. Data processing

Although variables in previous research take values from�1,�2/
3, �1/3, 0, 1/3, 2/3 and 1, they are chosen only to represent the
afore-mentioned 7-point scale from C to A. We apply the integer

DEA model in order to project the evaluated DMU’s output mea-
sures to the original 7-point scale, which we think would make
more practical sense than otherwise. Therefore it is reasonable to
use integers from 1 to 7 in efficiency analysis of the current appli-
cation instead of using the original values. Also, due to the data
characteristics of the output variables (integers between 1 and 7),
the performance targets for all 24 outputs should also be restricted
to integers ranging from 1 to 7. Otherwise, if a fractional value is
chosen for reference, it will have no corresponding position in the
7 scales, which can make the targets and the original data not com-
parable based on the same standard.

Note that for this data set, there is no input measure involved. To
make the DEA method applicable, we assign a unified input with va-
lue 1 to all DMUs (or individual projects). Thus, each DMU has one
input valued at 1 and 24 outputs with integer values between 1 and
7. Because only output variables are restricted to integers, it is
appropriate to use the output-oriented models when taking a radial
perspective. Moreover, non-unit-invariant models are chosen for
analysis because all input/output measures in this application take
values (integers ranging from 1 to 7) from the same magnitude.

4.3. Main results and discussion

We first analyze this data set using our additive integer model
(3), and obtain additive efficiency and all 24 output slacks. Sev-
enty-two projects are evaluated as additive efficient, which are also
efficient according to radial model (2). All of the remaining 418 pro-
jects have efficiency less than 1, implying that they have non-zero
slacks from additive model (3). The efficiency scores for all 490
observations have a diversified distribution, ranging from the low-
est 0.18824 to the highest 1. Fig. 1 demonstrates the frequency of all
projects falling into different efficiency intervals. We find that the
efficiency interval between 0.3 and 0.4 has the highest frequency
0.245, which represents that approximately 24.5% of all projects,
or 120 projects, have additive efficiency greater than 0.3 but less
than or equal to 0.4. The efficiency intervals with the second and
third highest frequency are (0.4,0.5] (approximately 0.188, or 92
projects), and (0.9,1] (approximately 0.149, or 73 projects), respec-
tively. Also note that with the 72 efficient projects excluded, almost
80% of 418 additive inefficient projects have an efficiency score be-
tween 0.3 and 0.7.

Fig. 1. Additive efficiency for all projects.

Fig. 2. Probability in commercial success.

Table 1
Radial super-efficiency.

Project Sup-Radial Sell Project Sup-Radial Sell Project Sup-Radial Sell

12 0.71429 0 47 0.85714 0 307 0.85714 0
33 0.71429 0 64 0.85714 0 321 0.85714 0
73 0.71429 1 82 0.85714 0 333 0.85714 0
99 0.71429 1 89 0.85714 0 336 0.85714 0

185 0.71429 1 105 0.85714 0 341 0.85714 0
211 0.71429 1 106 0.85714 0 348 0.85714 0
231 0.71429 1 109 0.85714 1 371 0.85714 1
259 0.71429 0 110 0.85714 0 378 0.85714 0
263 0.71429 0 134 0.85714 0 383 0.85714 0
285 0.71429 1 135 0.85714 0 387 0.85714 0
316 0.71429 0 163 0.85714 0 394 0.85714 1
325 0.71429 1 176 0.85714 0 409 0.85714 0
367 0.71429 0 177 0.85714 1 415 0.85714 1
438 0.71429 0 186 0.85714 0 421 0.85714 0
461 0.71429 0 189 0.85714 0 424 0.85714 1
157 0.75 0 190 0.85714 0 442 0.85714 1
220 0.75 1 202 0.85714 0 444 0.85714 0
289 0.75 0 206 0.85714 0 445 0.85714 1
293 0.75 0 222 0.85714 0 463 0.85714 1
452 0.75 1 228 0.85714 0 464 0.85714 0

3 0.85714 0 244 0.85714 1 466 0.85714 1
6 0.85714 1 249 0.85714 1 475 0.85714 0

36 0.85714 0 270 0.85714 0 476 0.85714 0
40 0.85714 0 275 0.85714 0 487 0.85714 0
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According to original data set, 22 out of 72 efficient projects be-
came a success. The chance of successful commercialization for all
projects is 54/490, or approximately 11.0%, compared with the
chance for efficient projects 22/72, or approximately 30.6%. Such
an observation suggests that efficient projects have a much better
chance (almost three times as much) in commercial success com-
pared with the ‘‘all projects’’ pool. For the remaining 418 inefficient
projects, only 32 of them thrive in the market, thus the chance is
32/418, or approximately 7.7%. This figure shows that probability
in success for inefficient projects decreases greatly. Fig. 2 provides
a clearer illustration and comparison of the probability in success
for three groups, namely, the whole project pool, additive efficient
and inefficient projects.

Next we focus on output slacks of the inefficient projects. Opti-
mal slacks indicate those aspects that need to be improved to reach
the efficient frontier. Based upon the total slacks in each output
variable, the top five outputs in terms of ‘‘slack sum’’ are v40,
v38, v37, v33, v11, which represent the most important five direc-
tions for performance improvement. We compare them with the
top five variables on Spearman rank-order correlations with prob-
ability of commercialization, which are v40, v38, v33, v23 (v39),
andv37 (Åstebro and Elhedhli, 2006). We further notice that the
top five output variables contributing the most to efficiency assess-
ment are very consistent with those correlating the most with
probability of commercial success.

To further differentiate the 72 efficient projects, we first try ra-
dial super-efficiency model (4). Table 1 presents radial super-effi-
ciency scores in column ‘‘Sup-Radial’’. The information on
commercialization is demonstrated in column ‘‘Sell’’, with 1 repre-
senting success and 0 representing failure. It is seen from Table 1
that the radial super-efficiency has a fairly weak discrimination
power. There are only three different super-efficiency values for
all 72 efficient projects: 0.71429 for 15 projects, 0.75 for 5 projects,
and 0.85714 for 52 projects.

Next we consider the additive super-efficiency model (6) to see
if the same set of efficient DMUs can be better distinguished. Table
2 presents the related super-efficiency results for all efficient pro-
jects from high to low in column ‘‘Sup-Additive’’. The information
on commercialization is listed in column ‘‘Sell’’. We observe that
the differentiating power of additive super-efficiency is much

stronger than that of radial super-efficiency. There are altogether
fourteen different additive super-efficiency scores for all 72 effi-
cient projects: 1.09804, 1.07692, 1.0752, 1.07006, 1.05, and
1.01664 respectively corresponds to one project; 1.0566 for 4 pro-
jects, 1.04186 for 2 projects, 1.03704 for 16 projects, 1.03067 for 3
projects, 1.02283 for 3 projects, 1.01818 for 28 projects, 1.01205
for 8 projects, and 1.00599 for 2 projects.

5. Conclusions

In many real-world DEA problems, some variables can only
take integer values. Traditional DEA models assume that the input
and output variables are continuous, and therefore the identified
efficient benchmark targets are very likely to be fractional. To
rectify this problem, the current paper proposes two types (radial
and additive) of integer-valued efficiency and super-efficiency
models.

We illustrate our models by an empirical efficiency evaluation
of 490 potential business projects. We find that efficient projects
have a much better chance in success than that of the ‘‘all projects’’
pool or inefficient projects. The results also demonstrate that addi-
tive super-efficiency models offer a higher discrimination power
than radial super-efficiency models, where the latter does not con-
sider slacks.

We note that while Tone (2002) develops the slacks-based
super-efficiency measure, Ray (2008) uses the Nerlove–Luenberger
(NL) measure of super-efficiency obtained from the directional dis-
tance function (DDF) (Chambers et al., 1996) in an empirical study
on the airline industry. One possible study is to examine whether
the DDF-based NL super-efficiency can be extended into integer-
valued applications.

Finally, note that if we drop the constraint
Pn

j¼1kj ¼ 1 in our
models, we have models with constant returns to scale (CRS).
Therefore, all the discussions can be applied to the CRS situation.
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Appendix A

Variable name Description

Technical factors
V1 Technical

feasibility
Is the technical solution sound and
complete?

V2 Functional
performance

Will the innovation effectively achieve
the intended purpose?

V3 Research and
development

How great a burden is the remaining
research and development required to
bring the innovation to a marketable
stage?

Production factors
V8 Technology of

production
Are the technology and skills required to
produce the invention available?

V9 Tooling cost How great a burden is the cost of
production tooling required to meet the
expected demand?

V10 Cost of
production

Does production at a reasonable cost
level appear possible?

Market factors demand
V11 Need Does the innovation solve a problem, ill a

need or satisfy a want for the customer?
V13 Trend of

demand
Will the demand for such an innovation
be expected to rise, remain steady, or fall
in the lifetime of this idea?

V15 Demand
predictability

How closely will it be possible to predict
sales?

V16 Product line
potential

Can the innovation lead to other
profitable products or services?

Acceptability
V19 Compatibility Is the innovation compatible with

current attitudes and ways of doing
things?

V22 Appearance Does the appearance of the innovation
convey a message of desirable qualities?

V23 Comparative
functionality

Does this innovation work better than
the alternatives?-or fulfill a unction not
now provided?

V24 Durability Will this innovation endure ‘‘long
usage’’?

Competition
V26 Price Does this innovation have a price

advantage over its competitors?

Effort
V29 Marketing

research
How great an effort will be required to
define the product and price that the
final market will find acceptable?

V30 Promotion
cost

Is the cost and effort of promotion to
achieve market acceptance of the
innovation in line with expected
earnings?

V31 Distribution How difficult will it be to develop or
access distribution channels for the
innovation?

Appendix A (continued)

Variable name Description

Risk factors
V33 Development

risk
What degree of uncertainty is associated
with complete successful development
from the present condition of the
innovation to the market ready state?

V35 Protection Is it likely that worthwhile commercial
protection will be obtainable for this
innovation through patents, trade
secrets or other means?

V37 Size of
investment

Is the total investment required for the
project likely to be obtainable?

V38 Potential sales Is the sales volume for this particular
innovation likely to be sufficient to
justify initiating the project?

V39 Payback
period

Will the initial investment be recovered
in the early life of the innovation?

V40 Profitability Will the expected revenue from the
innovation provide more profits than
other investment opportunities?
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