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In conventional DEA analysis, DMUs are generally treated as a black-box in the sense that internal struc-
tures are ignored, and the performance of a DMU is assumed to be a function of a set of chosen inputs and
outputs. A significant body of work has been directed at problem settings where the DMU is characterized
by a multistage process; supply chains and many manufacturing processes take this form. Recent DEA
literature on serial processes has tended to concentrate on closed systems, that is, where the outputs
from one stage become the inputs to the next stage, and where no other inputs enter the process at
any intermediate stage. The current paper examines the more general problem of an open multistage pro-
cess. Here, some outputs from a given stage may leave the system while others become inputs to the next
stage. As well, new inputs can enter at any stage. We then extend the methodology to examine general
network structures. We represent the overall efficiency of such a structure as an additive weighted aver-
age of the efficiencies of the individual components or stages that make up that structure. The model
therefore allows one to evaluate not only the overall performance of the network, but as well represent
how that performance decomposes into measures for the individual components of the network. We
illustrate the model using two data sets.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Data envelopment analysis (DEA) is a tool for measuring the relative efficiency of peer decision making units (DMUs) that have multiple
inputs and outputs. As indicated in Cooper et al. (2004), the definition of a DMU is generic and flexible. DMUs can be any entities engaged in
many different activities in many different contexts, e.g., hospitals, US Air Force wings, universities, cities, courts, business firms, and oth-
ers. In conventional DEA, DMUs are treated as a black-box in the sense that internal structures are generally ignored, and the performance
of a DMU is assumed to be a function of the chosen inputs and outputs. In many cases, DMUs may have internal or network structures; see
for example, Färe and Grosskopf (1996), Castelli et al. (2004), and Tone and Tsutsui (2009). In the latter case, the authors provide a slacks-
based model that captures the overall efficiency of the DMU, and provides, as well, measures for the components (referred to as divisions)
or stages that make up the DMU. The overall efficiency is expressed as a weighted average of the component efficiencies, where weights are
exogenously imposed to reflect the perceived importance of the components. The current paper focuses on the derivation of a radial mea-
sure of efficiency that can be decomposed into a convex combination of radial measures for the individual components that make up the
DMU. In our case the weights are variables, and not imposed exogenously.

These types of DMUs have not only inputs and outputs, but also intermediate measures that flow from one stage to the other. Each stage
may also have its own inputs and outputs. Recently, a number of studies have focused on DMUs that appear as two-stage processes. For
example, Seiford and Zhu (1999) view the profitability and marketability of US commercial banks as a two-stage process. In their study,
profitability is measured in the first stage using labor and assets as inputs and profits and revenues as outputs. In the second stage for mar-
ketability, the profits and revenue are then used as inputs, while market value, returns and earnings per share, constitute the outputs. Kao
and Hwang (2008) describe a two-stage process where 24 non-life insurance companies use operating and insurance expenses to generate
premiums in the first stage, and then underwriting and investment profits in the second stage. Other examples include the impact of infor-
mation technology use on bank branch performance (Chen and Zhu, 2004), two stage Major League Baseball performance (Sexton and Le-
wis, 2003), health care application (Chilingerian and Sherman, 2004), and many others.
ll rights reserved.
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Some of the above studies use the conventional DEA approach; see, for example, Seiford and Zhu (1999), and Sexton and Lewis (2003).
This approach does not, however, address potential conflicts between the two stages arising from the intermediate measures. For example,
the second stage may have to reduce its inputs (intermediate measures) in order to achieve an efficient status. Such an action would, how-
ever, imply a reduction in the first stage outputs, thereby reducing the efficiency of that stage.

Novel approaches have been developed to model the intermediate measures that exist between stages within DMUs. For example, Kao
and Hwang (2008) modify the standard radial DEA model by decomposing the overall efficiency of the DMU into the product of the effi-
ciencies of the two stages. Such multiplicative efficiency decomposition is also studied in Liang et al. (2008), where three DEA models/effi-
ciency decompositions are developed using game theory concepts. More recently, Chen et al. (2009) present a methodology for
representing overall radial efficiency of a DMU as an additive weighted average of the radial efficiencies of the individual stages or com-
ponents that make up the DMU.

While the approaches of Kao and Hwang (2008), Liang et al. (2008), and Chen et al. (2009) can be extended to DMUs that have more than
two stages, such an extension requires that the multistage processes share the unique feature that all outputs from any stage represent the
only inputs to the next stage. In other words, except for the first stage, all other stages do not have their own independent inputs (and/or
outputs), that enter (exit) the process at that point. While these closed systems do exist, the more prevalent case is that where each stage is
open, that is it has its own inputs (and/or outputs) in addition to the intermediate measures.

Such open multistage structures are relatively common, particularly in processing industries. Consider, for example, the situation in
which a coal mining company wishes to evaluate the efficiency of a set of collieries (mining operations) in a large coal field. Typically,
the process of delivering finished products to the customer is multistage in nature. In crude terms, stage 1 would involve the extraction
of the raw or run-of-mine (ROM) coal from underground or open pit coal reserves. At the mine site, the ROM is generally put through a
process where screens separate the product into different size categories; e.g., a ‘more than one inch in diameter’ category, and a ‘less than
one inch’ category. The resulting ‘size grades’, representing the outputs from this first stage, are then transported to an on-site washing
facility, which might be deemed stage 2. The washing process filters out any material below a certain specific gravity; this portion is unsuit-
able for sale and is discarded. A portion of the remaining usable coal (outputs from stage 2) is sold to the open market as a finished product,
and at management’s discretion (based on estimates of the demand), the remaining product is sent to stage 3, the crusher. The crushing
process also produces waste or discard, with the remaining material, sometimes referred to as ‘middlings’, being sold or blended with other
materials to make such products as briquettes. This latter process might be thought of as stage 4.

Numerous such examples from processing industries exist. In many cases a portion of the outputs from one stage may be in ‘finished’
form and go to the consumer market, with the remainder being reprocessed at the next stage to get a more pure form of the product. The
petrochemical industry, perfume manufacturing and so on, are examples.

It is important to note that the models of Kao and Hwang (2008), Liang et al. (2008) and Chen et al. (2009) concentrate specifically on
pure serial processes. The current paper develops linear models for DMUs that have multiple stages, with each stage being open, having its
own inputs and outputs. We also obtain an additive efficiency decomposition of the overall efficiency score. The advantage of additive effi-
ciency decomposition is that we can also study performance under assumptions of both constant returns to scale (CRS) and variable returns
to scale (VRS). As noted above, we adopt a radial efficiency framework, as compared to the slacks-based framework of Tone and Tsutsui
(2009).

For ease of notation, we begin in Section 2 by examining open serial systems as described above. We present a model for measuring the
overall radial efficiency of the general serial multistage process, and show that this measure can be decomposed into radial measures of
efficiency for the components or stages making up the overall process. Section 3 then extends this model structure to include more com-
plex multistage processes. Our approach is illustrated in Section 4 with the supply chain data set in Liang et al. (2006). As well, we re-eval-
uate the data set provided in Tone and Tsutsui (2009).
2. DEA model for general multistage serial processes via additive efficiency decomposition

Consider the P-stage process pictured in Fig. 1. We denote the input vector to stage 1 by zo. The output vectors from stage p (p = 1, . . . ,P)
take two forms, namely z1

p and z2
p . Here, z1

p represents that output that leaves the process at this stage and is not passed on as input to the
next stage. The vector z2

p represents the amount of output that becomes input to the next (p + 1) stage. These types of intermediate mea-
sures are called links in Tone and Tsutsui (2009). In addition, there is the provision for new inputs z3

p to enter the process at the beginning of
stage p + 1. Specifically, when p = 2,3, . . . , we define:

(1) zj1
pr the rth component (r = 1, . . . ,Rp) of the Rp-dimensional output vector for DMUj flowing from stage p, that leaves the process at that

stage, and is not passed on as an input to stage p + 1.
(2) zj2

pk the kth component (k = 1, . . . ,Sp) of the Sp-dimensional output vector for DMUj flowing from stage p, and is passed on as a portion
of the inputs to stage p + 1.

(3) zj3
pi the ith component (i = 1, . . . , Ip) of the Ip-dimensional input vector for DMUj at the stage p + 1, that enters the process at the begin-

ning of that stage.

Note that in the last stage P, all the outputs are viewed as zj1
pr , as they leave the process.

We denote the multipliers (weights) for the above factors as:

(1) upr is the multiplier for the output component zj1
pr flowing from stage p.

(2) gpk is the multiplier for the output component zj2
pk at stage p, and is as well the multiplier for that same component as it becomes an

input to stage p + 1.
(3) mpi is the multiplier for the input component zj3

pi entering the process at the beginning of stage p + 1.

Thus, when p = 2,3, . . . , the efficiency ratio for DMUj (for a given set of multipliers) would be expressed as:
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Fig. 1. Serial multistage DMU.
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Note that there are no outputs flowing into stage 1. The efficiency measure for stage 1 of the process (namely, p = 1), for DMUj becomes
h1 ¼
XR1

r¼1

u1rz
j1
1r þ

XS1

k¼1

g1kzj2
1k

 !,XI0

i¼1

m0iz
j
0i; ð2Þ
where zj
0i are the (only) inputs to the first stage represented by the input vector zo.

We claim that the overall efficiency measure of the multistage process can reasonably be represented as a convex linear combination of
the P (stage–level) measures, namely
h ¼
XP

p¼1

wphp where
XP

p¼1

wp ¼ 1:
Note that the weights wp are intended to represent the relative importance or contribution of the performances of individual stages p to the
overall performance of the entire process. One reasonable choice for weights wp is the proportion of total resources for the process that are

devoted to stage p, and reflecting the relative size of that stage. To be more specific,
PI0

i¼1m0iz
j
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PP
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resents the total size of or total amount of resources consumed by the entire process, and we define the wp to be the proportion of the total
input used at the pth stage. We then have
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Thus, we can write the overall efficiency h in the form
h ¼
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We then set out to optimize the overall efficiency h of the multistage process, subject to the restrictions that the individual measures hp must
not exceed unity, or in the linear programming format, after making the usual Charnes and Cooper transformation,
max
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upr; gpk; mpi; m0i > 0:
Note that we should impose the restriction that the overall efficiency scores for each j should not exceed unity, but since these are redundant,
this is unnecessary.
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Note again that the wp, as defined above, are variables related to the inputs and the intermediate measures. By virtue of the optimization
process, it can turn out that some wp = 0 at optimality. To overcome this problem, one can impose bounding restrictions wp P b, where b is
a selected constant. This is illustrated in the examples of Section 4.

3. General multistage processes

In the process discussed in the previous section it is assumed that the components of a DMU are arranged in series as depicted in Fig. 1.
There, at each stage p, the inputs took one of two forms, namely (1) those that are outputs from the previous stage p � 1, and (2) new inputs
that enter the process at the start of stage p. On the output side, those (outputs) emanating from stage p take two forms as well, namely (1)
those that leave the system as finished ‘products’, and (2) those that are passed on as inputs to the immediate next stage p + 1.

The model presented to handle such strict serial processes is easily adapted to more general network structures. Specifically, the effi-
ciency ratio for an overall process can be expressed as the weighted average of the efficiencies of the individual components. The efficiency
of any given component is the ratio of the total output to the total input corresponding to that component. Again, the weight wp to be ap-
plied to any component p is expressed as
wp ¼ ðcomponent p inputÞ=ðtotal input across all componentsÞ:
There is no convenient way to represent a network structure that would lend itself to a generic mathematical representation analogous to
model (4) above. The sequencing of activities and the source of inputs and outputs for any given component will differ from one type of pro-
cess to another. However, as a simple illustration, consider the following two examples of network structures:

3.1. Parallel processes

Consider the process depicted in Fig. 2. Here, an initial input vector zo enters component 1. Three output vectors exit this component,
that is z1

1 leaves the process, z2
1 is passed on as an input to component 2, and z3

1 as an input to component 3. Additional inputs z4
1 and z5

1 enter
components 2 and 3 respectively, from outside the process. Components 2 and 3 have z1

2 and z1
3, respectively as output vectors which are

passed on as inputs to component 4, where a final output vector z1
4 is the result.

3.1.1. Component efficiencies

Component 1 efficiency ratio: h1 ¼ u1z1
1 þ g2

1z2
1 þ g3

1z3
1

� ��
mozo

Component 2 efficiency ratio: h2 ¼ g1
2z1

2 g2
1z2

1 þ m1z4
1

� ��
Component 3 efficiency ratio: h3 ¼ g1

3z1
3 g3

1z3
1 þ m2z5

1

� ��
Component 4 efficiency ratio: h4 ¼ u4z1

4 g1
2z1

2 þ g1
3z1

3

� ��
3.1.2. Component weights

Note that the total (weighted) input across all components is given by the sum of the denominators of h1 through h4, namely
I ¼ mozo þ g2
1z2

1 þ m1z4
1 þ g3

1z3
1 þ m2z5

1 þ g1
2z1

2 þ g1
3z1

3:
Now express the wp as:
w1 ¼ mozo=I;

w2 ¼ g2
1z2

1 þ m1z4
1

� �
=I;

w3 ¼ g3
1z3

1 þ m2z5
1

� �
=I;

w4 ¼ g1
2z1

2 þ g1
3z1

3

� �
=I:
With this, the overall network efficiency ratio is given by
3

2

1 4Z 0

4
1z

5
1z

1
1z

1
2z

1
3z

2
1z

3
1z

1
4z

Fig. 2. Multistage DMU with parallel processes.
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Fig. 3. Non-immediate successor flows.
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h ¼
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1z2
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2z1
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And one then proceeds, as in (4) above, to derive the efficiency of each DMU and its components.

3.2. Non-immediate successor flows

In the previous example all flows of outputs from a stage or component either leave the process entirely or enter as an input to an imme-
diate successor stage. In Fig. 1, stage p outputs flow to stage p + 1. In Fig. 2, the same is true except that there is more than one immediate
successor of stage 1.

Consider Fig. 3. Here, the inputs to stage 3 are of three types, namely outputs from stage 2, inputs coming from outside the process, and
outputs from a previous, but not immediately previous stage. Again the above rationale for deriving weights wp can be applied and a model
equivalent to (4) solved to determine the decomposition of an overall efficiency score into scores for each of the components in the process.

4. An illustrative application

We here re-visit the supply chain data set used in Liang et al. (2006). This data set consists of a two-stage process, or a seller-buyer

supply chain. The inputs to the first stage (seller) are labor zj
01

� �
, operating cost zj

02

� �
and shipping cost zj

03

� �
. The outputs from the first

stage are number of product A shipped zj2
11

� �
, number of product B shipped zj2

12

� �
and number of product C shipped zj2

13

� �
. This data set

assumes that all outputs from the first stage become inputs to the second stage, i.e., there is no z1
1. There is one input to the second stage

(buyer), labor zj3
11

� �
, and two outputs from the second stage, sales zj1

21

� �
and profits zj1

22

� �
. Table 1 provides the data set.

In this case, we have, for DMUo
w1 ¼
X3

i¼1

m0izo
0i

X3

i¼1

m0izo
0i þ

X3

k¼1

g1kzo2
1k þ m11zo3

11

 !,
;

w2 ¼
X3

k¼1

g1kzo2
1k þ m11zo3

11

 !, X3

i¼1

m0izo
0i þ

X3

k¼1

g1kzo2
1k þ m11zo3

11

 !
;

max
X3

k¼1

g2kzo2
1k þ

X2

r¼1

u2rzo1
2r ;

subject to
X3

i¼1

m0izo
0i þ

X3

k¼1

g1kzo2
1k þ m11zo3

11 ¼ 1;

X3

k¼1

g1kzj2
1k 6

X3

i¼1

m0iz
j
0i; j ¼ 1; . . . ;10 ðfor stage 1Þ; ð5Þ

X2

r¼1

u2rz
j1
2r 6

X3

k¼1

g1kzj2
1k þ m11zj3

11; j ¼ 1; . . . ;10 ðfor stage 2Þ;
where efficiency scores for DMUo in stages 1 and 2 can be expressed as
h1 ¼
X3

k¼1

g1kzo2
1k

,X3
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m0izo
0i;

h2 ¼
X2

r¼1

u2rzo1
2r
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1k þ m11zo3
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 !
:

Table 2 reports the results from model (5) where the last two columns display the efficiency scores derived from the cooperative model of
Liang et al. (2006). Note that the differences between the two approaches are not significant. For example, the two approaches yield identical
efficiency scores for the two stages for DMUs, 2, 5, 6, and 9. Liang et al.’s (2006) approach is based upon a non-linear program and its solution
is obtained by using heuristic search. While the current approach uses a linear program and guarantees a global optimal solution.



Table 1
Data set.

DMU Labor Operating cost Shipping cost Product A Product B Product C Labor Sales Profits

zj
01 zj

02 zj
03 zj2

11 zj2
12 zj2

13 zj3
11 zj1

21 zj1
22

1 9 50 1 20 10 5 8 100 25
2 10 18 10 10 15 7 10 70 20
3 9 30 3 8 20 2 8 96 30
4 8 25 1 20 20 10 10 80 20
5 10 40 5 15 20 5 15 85 15
6 7 35 2 35 10 5 5 90 35
7 7 30 3 10 25 8 10 100 30
8 12 40 4 20 25 4 8 120 10
9 9 25 2 10 10 5 15 110 15

10 10 50 1 20 15 9 10 80 20

Table 2
Results.

DMU Our results (Model (5)) Liang et al. (2006)

Overall score w1 w2 h1 h2 h1 h2

1 0.92495 0.30843 0.69157 0.75666 1 1 0.89394
2 0.86486 0.51974 0.48026 0.92403 0.80082 0.92403 0.80082
3 0.85898 0.34817 0.65183 0.59497 1 0.69106 1
4 0.77381 0.5 0.5 1 0.54762 1 0.62786
5 0.62073 0.46194 0.53806 0.67595 0.57332 0.67595 0.57332
6 1 0.27992 0.72008 1 1 1 1
7 0.90405 0.5 0.5 1 0.80811 1 0.81888
8 0.92886 0.21477 0.78523 0.66875 1 0.74667 1
9 0.78091 0.43817 0.56183 0.5 1 0.5 1

10 0.75444 0.54281 0.45719 0.84226 0.65018 1 0.59596
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Note that the average of the two stages’ efficiency scores is used as the objective function in Liang et al.’s (2006) non-linear model,
namely, the weights for the two individual efficiency scores are equal, w1 = w2. The current approach yields w1 = w2 = 0.5 for DMUs 4
and 7. Yet, our results are different from those obtained from Liang et al. (2006). For example, in DMU 7, the efficiency score for the second
stage is 0.54762 compared to 0.81888 from Liang et al. (2006). This is due to the fact that our choice of weights actually introduces some
sort of value judgment into the DEA model, and restricts the multiplier values in model (5). This is why Liang et al.’s (2006) score is larger
than ours when w1 = w2 = 0.5 in optimality.

Note that weights wp (p = 1,2, . . . ,P) defined in our paper are actually variables related to the multiplier decision variables. We next,
therefore, impose additional restrictions on w1 and w2 in model (5) via
Table 3
Results

DMU

1
2
3
4
5
6
7
8
9

10
w1 ¼
X3

i¼1

m0izo
0i

X3

i¼1

m0izo
0i þ

X3

k¼1

g1kzo2
1k þ m11zo3

11

 !, )
P b1

(
;

w2 ¼
X3

k¼1

g1kzo2
1k þ m11zo3

11

 ! X3

i¼1

m0izo
0i þ

X3

k¼1

g1kzo2
1k þ m11zo3

11

 !, )
P b2

(
;

where b1 and b2 are user-specified parameters. In this way, we can perform sensitivity analysis on w1 and w2.
We first impose b1 = b2 and change b1 and b2 0.1 to 0.5 with a 0.1 increment each time. Note that when b1 = b2 = 0.5, we explicitly require

that w1 = w2 = 0.5 as in Liang et al. (2006). Table 3 reports the results when b1 = b2 = 0.5. Both our approach and Liang et al.’s (2006) yield
identical efficiency scores for DMU 9. Except for DMU 1, Liang et al.’s (2006) score is larger than ours when w1 = w2 = 0.5 in optimality. For
with b1 = 0.5, b2 = 0.5.

Overall score w1 w2 h1 h2

0.86323 0.5 0.5 0.72645 1
0.85303 0.5 0.5 0.9222 0.78386
0.83629 0.5 0.5 0.67258 1
0.77381 0.5 0.5 1 0.54762
0.61749 0.5 0.5 0.67595 0.55903
0.99678 0.5 0.5 0.99357 1
0.90405 0.5 0.5 1 0.80811
0.81756 0.5 0.5 0.72772 0.9074
0.75 0.5 0.5 0.5 1
0.75435 0.5 0.5 0.85137 0.65732



Table 4
Results with b1 = b2 = 0.1 (0.2,0.3,0.4).

DMU Overall score w1 w2 h1 h2

2 0.86486 0.51974 0.48026 0.92403 0.80082
4 0.77381 0.5 0.5 1 0.54762
5 0.62073 0.46194 0.53806 0.67595 0.57332
6 1 0.31591 0.68409 1 1
7 0.90405 0.5 0.5 1 0.80811
9 0.78091 0.43817 0.56183 0.5 1

10 0.75444 0.54281 0.45719 0.84226 0.65018

Table 5
Results for DMUs 1, 3, and 8.

DMU Overall score w1 w2 h1 h2

1 0.92495 0.30843 0.69157 0.75666 1 b1 = b2 = 0.1,0.2,0.3
1 0.90182 0.4 0.6 0.75455 1 b1 = b2 = 0.4
3 0.85898 0.34817 0.65183 0.59497 1 b1 = b2 = 0.1,0.2,0.3
3 0.85186 0.4 0.6 0.62966 1 b1 = b2 = 0.4
8 0.92886 0.21477 0.78523 0.66875 1 b1 = b2 = 0.1,0.2
8 0.91627 0.3 0.7 0.72091 1 b1 = b2 = 0.3
8 0.89238 0.4 0.6 0.73095 1 b1 = b2 = 0.4
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DMU 1, the definition of our weights and restrictions on our weights turn the efficient stage 1 under Liang et al.’s (2006) approach into an
inefficient stage, and the inefficient stage 2 under Liang et al.’s (2006) approach into efficient.

Table 4 reports the results for DMUs 2, 4, 5, 6, 7, 9 and 10 whose efficiency scores along with the optimized weights remain unchanged
when b1 = b2 = 0.1, 0.2, 0.3 and 0.4, respectively.

Table 5 reports the results for DMUs 1, 3 and 8 whose efficiency scores changed when b1 and b2 are changed (see the last column of
Table 5). For DMUs 1 and 3, change in the efficiency scores does not occur until b1 = b2 = 0.4. For DMU 8, a change in the efficiency score
for the first stage is observed when b1 = b2 = 0.3 and 0.4.

It can be seen that up to b1 = b2 = 0.3, most of the DMUs have the same weights and efficiency scores with respect to different values of
b1 and b2. As expected, when b1 = b2 = 0.4, some of the resulting weights are different from the previous cases. However, we note that the
efficiency scores do not change significantly. We also note that the efficiency scores for the second stage do not change when b1 and b2 are
increased from 0.1 to 0.4.
Table 6
Data set in Tone and Tsutsui (2009).

Stage 1 Stage 2 Stage 3 Intermediate measure

Input 1 Input 2 Output 2 Input 3 Output 3 Link12 Link23

A 0.838 0.277 0.879 0.962 0.337 0.894 0.362
B 1.233 0.132 0.538 0.443 0.18 0.678 0.188
C 0.321 0.045 0.911 0.482 0.198 0.836 0.207
D 1.483 0.111 0.57 0.467 0.491 0.869 0.516
E 1.592 0.208 1.086 1.073 0.372 0.693 0.407
F 0.79 0.139 0.722 0.545 0.253 0.966 0.269
G 0.451 0.075 0.509 0.366 0.241 0.647 0.257
H 0.408 0.074 0.619 0.229 0.097 0.756 0.103
I 1.864 0.061 1.023 0.691 0.38 1.191 0.402
J 1.222 0.149 0.769 0.337 0.178 0.792 0.187

Table 7
Results on three-stage process.

Overall Stage 1 Stage 2 Stage 3 w1 w2 w3

A 0.579 0.410 0.646 0.971 0.46 0.41 0.13
B 0.386 0.211 0.339 0.414 0.10 0.10 0.80
C 1.000 1.000 1.000 0.999 0.42 0.48 0.10
D 0.917 0.225 0.942 1.000 0.10 0.10 0.80
E 0.478 0.167 0.501 0.953 0.36 0.42 0.22
F 0.598 0.470 0.656 0.984 0.51 0.37 0.11
G 0.762 0.551 0.717 0.983 0.24 0.44 0.32
H 0.675 0.711 0.599 0.843 0.46 0.44 0.10
I 0.922 0.245 1.000 0.990 0.10 0.64 0.26
J 0.476 0.249 0.423 0.511 0.10 0.10 0.80
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We also performed calculations when b1 is fixed at 0.2 and b2 is changed from 0.3 to 0.8 with an increment of 0.1 each time (results are
not reported here). In overall, the efficiency scores do not change significantly.

The above sensitivity analysis indicates that efficiency scores obtained based upon our approach are robust with respect to our choice of
weights.

We finally apply our approach to the numerical example used in Tone and Tsutsui (2009). Table 6 provides the data. We have two inter-
mediate measures or outputs flow from one stage to the other. Table 7 reports the results. In this case, if we do not impose a lower bound
for the wp (p = 1,2,3), we have some wp = 1 at optimality (for DMUs B, D, I and J). Therefore, we impose wp P 0.1 (p = 1,2,3) in model (4).
Because our approach is different from Tone and Tsutsui’s (2009) and our choice of weights introduces restrictions on the multipliers, our
results are different from theirs.

5. Conclusions

The current paper develops a DEA approach for DMUs that have a general multistage or network structure. We first examine pure serial
networks where each stage has its own inputs and two types of outputs. One type of output from any given stage p is passed on as an input
to the next stage, and the other type exits the process at stage p. Work closely related to the current paper is the non-linear approach of
Liang et al. (2006) where a two-member supply chain structure is studied. While Liang et al. (2006) developed a heuristic search algorithm
after converting the non-linear model into a parametric linear model, their approach cannot be generalized into cases where supply chains
have more than two members. Our approach can, however, handle via a linear model, situations where more than two stages are present.

In general, the intermediate measures are those that exist between two members of the network. In many cases, the intermediate mea-
sures are obvious, as indicated in our examples mentioned in the Introduction. Tone and Tsutsui (2009) provides other good examples.
Sometimes, the selection of intermediate measures is not so obvious. The important thing is that intermediate measures are neither ‘‘in-
puts” (to be reduced) nor ‘‘outputs” (to be increased), rather these measures need to be ‘‘coordinated” to determine their efficient levels
(see, Kao and Hwang (2008) and Liang et al. (2008).)

The current paper develops models under the assumption of constant returns to scale (CRS). We should point out that our models can
directly be applied to variable returns to scale (VRS) by adding the free-in-sign variable in our ratio efficiency definition, just as in the stan-
dard VRS DEA model. Such an extension is difficult in the approach of Liang et al. (2006), as the resulting model is highly non-linear and
cannot be converted into a parametric linear program. Therefore, the current paper extends and generalizes the approach of Liang et al.
(2006).

We demonstrate that the approach applied to serial process applies as well to more general network structures. This is illustrated using
the data provided in Tone and Tsutsui’s (2009).
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