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This paper presents a methodology for dealing with performance evaluation settings where factors can simultaneously play both
input and output roles. Model structures are developed for classifying Decision-Making Units (DMUs) into three groups according
to whether such a factor is behaving like an output, an input, or is in equilibrium, neither wanting to lose or gain any of the factors. We
connect these ideas to those involving increasing, decreasing and constant returns to scale. Examples of factors that play this dual-role
are: trainees in organizations, such as nurses, medical students, and doctoral students; awards to scholars or university departments;
certain revenue—generating transactions in banks, and so on. We apply the model to the analysis of a set of university departments.
In some settings, a dual-role factor may be one that can be reallocated, such as would be the case when DMUs are managed by a
central authority. We develop the appropriate model structures to permit such a reallocation. We present two such structures, with
the first involving reallocation from an existing allocation, and the second, a zero-base allocation.

1. Introduction

Data Envelopment Analysis (DEA) was developed by
Charnes et al. (1978) to serve as a mechanism to evaluate
the relative efficiencies of a set of similar decision-making
units. A vast literature has grown out of this original work of
both a methodological and applied nature. In the usual set-
ting, Decision-Making Units (DMUs), for example, bank
branches, hospitals, research projects, are evaluated rela-
tive to one another using a specified set of input and output
factors. Outputs are meant to capture what the DMU gen-
erates; inputs represent the resources or circumstances that
have led to the creation of those outputs.

In some situations there is a strong argument for permit-
ting certain factors to simultaneously play the role of both
inputs and outputs. Consider using the number of nurse
trainees on staff in a study of hospital efficiency. Such a
factor clearly constitutes an output measure for a hospital,
but at the same time it is an important component of the
hospital’s total staff complement, hence it is an input.

In a completely different setting, consider the problem
of evaluating researchers who receive grants from federal
granting agencies. Such an evaluation might be undertaken
as a means of identifying the highest-priority awardees,
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hence deriving an optimal allocation of research funds. In
such a setting, while published research (articles in refereed
journals, etc.) is likely the predominant output for evalu-
ating the researcher, the extent to which the research con-
tributes to the training of highly qualified personnel is also
an important component in the evaluation. Thus, the total
number of graduate students being trained is an output.
On the input side one might argue that at least two inputs
contribute to the generation of research publications: (i) re-
search dollars available to support publication; and (ii) the
number of graduate assistants participating in the awardee’s
research program. Hence, graduate students can be viewed
as serving in a dual-role capacity, simultaneously as both
an input and an output.

The idea of treating a factor as both an input and an out-
put within the DEA framework is not entirely new. Beasley
(1990, 1995), in a study of the efficiency of university de-
partments, treated research funding on both the input and
output sides. However, as will be shown later, this treatment
was not entirely appropriate.

In Section 2, we develop the appropriate model struc-
ture for considering dual-role factors within a performance
measurement setting. We show that the proper treatment
of such factors calls for viewing them as nondiscretionary.
Connections to returns to scale concepts are explored. Sec-
tion 3 extends these ideas to developing an optimal distri-
bution of such a factor across the set of DMUs for those
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situations where that factor is an allocatable resource. The
model structure for accomplishing this can be transformed
to a mixed integer programming problem. In Section 4 we
illustrate these ideas using a subset of Beasley’s data. Fi-
nally, Section 5 discusses further research directions.

2. Modeling dual-role factors

Consider a situation such as those discussed above where
members k of a set of K DMUs are to be evaluated in
terms of R outputs Yk = (yrk)R

r=1 and I inputs Xk(xik)I
i=1.

In addition, assume that a particular factor (for example,
research income) is held by each DMU in the amount wk,
and serves as both an input and output factor.

Adopting the Constant Returns to Scale (CRS) model of
Charnes et al. (1978), the natural tendency is to view the
measure of efficiency of DMU “o” as the solution to the
problem:

problem (1):

max

(
R∑

r=1

µr yro + γwo

)/(
I∑

i=1

υixio + βwo

)
,

subject to:
R∑

r=1

µr yrk + γwk −
I∑

i=1

υixi − βwk ≤ 0,

k = 1, . . . K,

µr , υi, γ, β ≥ 0. (1)

(We point out that herein we do not impose the non-
Archimedian infinitesimal (ε) lower bound restrictions on
the µ, υ multipliers. However, even if one did include such
restrictions, the results discussed below are essentially the
same.)

Problem (1) is essentially the model proposed by Beasley
(1990, 1995), where in that setting, wk would represent the
level of research funding. This model would appear to be
flawed from two perspectives:

The first flaw is that in the absence of constraints (e.g.,
AR or cone ratio) on the multipliers {µr } and {υi} (see
Thompson et al. (1990), for example), each DMU will be
100% efficient. To show this we prove the following lemma
and theorem.

Lemma 1. If in the standard CCR model all DMUs k =
1,. . . ,K possess the same amount of one of the given in-
puts i1 (i.e., xi11 = xi12 = · · · · · · · · · = xi1K = x), and the
same amount of a given output r1 (i.e., yr11 = yr12 =
· · · · · · · · · · · · = yr1K = y), then all DMUs are efficient.

Proof. According to Charnes et al. (1978), a DMU “o” is
efficient if the following two conditions hold: (i) θo = 1; and
(ii) all slacks are zero. Consider a solution to the standard
ratio CCR model in which all µr = 0, r �= r1 and all υi =
0, i �= i1. We now show that in the presence of such a solu-
tion, these two conditions are satisfied.

With this solution, the CCR problem reduces to the form:

problem (2):
max µr1 y/υi1 x,

subject to: µr1 y/υi1 x ≤ 1, k = 1 . . . ., K,

µr1, υi1 ≥ 0. (2)

Since the K constraints are identical, then K − 1 of these
are redundant and may be dropped. Hence, this single-
constraint fractional problem can be written as the two-
constraint linear programming model:

problem (3):
max µr1 y,

subject to: υi1 x = 1,

µr1 y − υi1 x ≤ 0, (3)
µr1, υi1 ≥ 0,

whose dual is given by:

problem (4):
min θ,

subject to: θx ≥ λx,

y ≤ λy, (4)
λ ≥ 0, θ unrestricted in sign.

From problem (4) it is clear that θ ≥ λ and λ ≥ 1. Hence,
θ∗ = λ∗ = 1 is the optimal solution. Thus, both constraints
in problem (4) are binding, meaning that all slacks are equal
to zero. Therefore, both of the aforementioned conditions
hold, proving the requisite efficiency of all DMUs. This
completes the proof. �

Theorem 1. All DMUs under problem (4) are efficient.

Proof. In problem (1) we may replace the ratio for each
DMU by a scaled version in which for each k we divide
both the numerator and denominator by wk (assuming that
wk > 0 for all k). Thus, problem (1) is equivalent to the
problem in which the dual-role factor for each DMU has
wk = 1. As a result, the model becomes a special case of that
provided for by Lemma 1. Hence, each DMU is efficient
in the sense of Charnes et al. (1978). This completes the
proof. �

It would appear that in the presence of multiplier con-
straints, the pathological efficiency results discussed above
would not generally occur, hence more realistic outcomes
might be expected. Problem (1) still, however, represents
somewhat of a contradiction. The logic of this input-
oriented structure is that in the case where a DMU has an
efficiency score of θ , then all discretionary inputs, including
wo, are reduced by 1 − θ . On the other hand, this factor is
also included on the output side where we assume wo will
not be reduced. Thus, problem (1) treats wo differently on
the input than on the output side.

To correct for this apparent flaw in the logic of prob-
lem (1), let us view the treatment of the wo variable in a
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somewhat different manner. Specifically, since wo serves as
an output, and is hence generally expected to remain at
its current level in the input-oriented setting, we recom-
mend treating it as being nondiscretionary on the input side.
(Since on the output side, variables generally remain fixed
in the optimization process of a model of the form problem
(1), wo can be viewed as nondiscretionary there as well).
From this perspective, the proper form of the “dual-factor
problem,” and thus the requisite modification of problem
(1) is that given by:

problem (5):

max

(
R∑

r=1

µr yro + γwo − βwo

)/(
I∑

i=1

υixio

)
,

subject to:
R∑

r=1

µr yrk + γwk − βwk −
I∑

i=1

υiγik ≤ 0,

k = 1, . . . , K,

µr , υi, γ, β ≥ 0. (5)

Banker and Morey (1986) were the first to introduce the
concept of exogenously fixed or nondiscretionary variables.
This idea often arises in situations where there are variables
that have an impact on efficiency, but which cannot be con-
trolled by the DMU manager (e.g., bank customer demo-
graphics). Thus, in the optimization, one does not want to
proportionally reduce these factors as would be true of the
discretionary inputs. The authors show that the proper way
to model such inputs is to move them to the output side,
but with the opposite sign.

In the usual manner, the linear programming form of
problem (5) is:

problem (6):

e∗
o = max

R∑
r=1

µr yro + γwo − βwo,

subject to:
I∑

i=1

υixio = 1,

R∑
r=1

µr yrk + γwk − βwk −
I∑

i=1

υixik ≤ 0, (6)

k = 1, . . . K,

µr , υi, γ, β ≥ 0.

One of three possibilities exists in regard to the sign of
γ̂ − β̂, where γ̂ , β̂ are the optimal values from problem (6);
γ̂ − β̂ > 0, = 0, or < 0. Before we discuss the implications
of these cases, we first prove the following property.

Property 1. At the optimum of problem (6), γ̂ β̂ = 0.

Proof. Since γ and β appear together in the same con-
straints, with multipliers that differ only in sign (wk versus
−wk), indicating their linear dependence. Hence, they can-
not be in the same basic feasible solution. Thus, at least one

of the two variables is nonbasic at the optimum, meaning
that, γ̂ β̂ = 0, completing the proof. �

2.1. Input/output behavior and returns to scale

The sign of γ̂ − β̂ can have important implications when the
dual-role factor is a resource that can be allocated across the
DMUs. While we will examine this aspect in detail in the fol-
lowing section, it is useful to comment here on an interesting
relationship that exists between the CRS model (problem
(6)) and the standard (no dual-role factors present) Vari-
able Returns to Scale (VRS) model of Banker et al. (1984).
Specifically, the VRS model with outputs Y and inputs X
is given by:

problem (7):

max

(
R∑

r=1

µr yro − µ0

)/
I∑

i=1

υixio,

(7)

subject to:
R∑

r=1

µr yrk − µ0 −
I∑

i=1

υixik ≤ 0,

k = 1, . . . K,

µr , υi ≥ 0, µ0 unrestricted in sign.

In the constant returns to scale model, µ0 is set to zero,
and the supporting hyperplane to any facet of the frontier
passes through the origin. Otherwise, µ0 is a form of “Y-
intercept,” to use an analogy with regression techniques. It
is well known that the sign of µ0 identifies the “returns to
scale” status of the DMU “o” under investigation. It is
useful therefore to examine the three cases in regard to this
sign, which will allow us to make important interpretations
pertaining to the sign of the variable γ̂ − β̂.

Case 1: If µ0 > 0 in problem (7), then the DMU “o” is
said to be experiencing decreasing returns to scale.
(Banker et al. 1984). Thus, the marginal return, in
terms of output, is less than the amounts of in-
put required to produce that output. In “returns
to scale” terminology, this DMU is not operat-
ing at the Most Productive Scale Size (MPSS), and
would benefit from a reduction in size (Banker and
Morey, 1986). A somewhat similar interpretation
can be made in problem (3) when γ̂ − β̂ < 0. Us-
ing research funding as the illustrative example,
one might argue that DMU “o” would experience
an improvement in efficiency with fewer research
dollars. That is, in this particular university, this
factor is at a level where diminishing returns have
set in, hence less of this factor would improve its
performance ratio. One can say that in this case,
the dual-role factor is “behaving like an input.”

Case 2: If µ0 < 0, then DMU “o” is experiencing increas-
ing returns to scale, and again it is not at the MPSS.
This case is analogous to γ̂ − β̂ > 0 in problem
(6), meaning that this university’s efficiency would
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benefit from increased research dollars. Specifi-
cally, this factor is at a level where it is “behaving
like an output,” hence more of the factor is better,
and would lead to an increase in efficiency.

Case 3: If µ0 = 0, then the DMU is experiencing constant
returns to scale, and the VRS model problem (7) re-
duces to the standard CRS model of Charnes et al.
(1978). The DMU would then be operating at the
MPSS. In a university setting, the analogous sit-
uation would be to have γ̂ − β̂ = 0, meaning that
the funding is at an equilibrium or optimal level.

The above comparison of the efficiency implications aris-
ing from the sign of γ̂ − β̂, to the returns to scale implica-
tions from the sign of µ0 in problem (7), aids in understand-
ing the impact of reallocation of a dual-role factor. Consider
for a moment the situation involving two inefficient DMUs,
where one DMU (k1) has a positive factor γ̂ − β̂, whereas
the other (k2) has a negative factor, and that we transfer
a small amount of the resource from k2 to k1. Provided
the amount transferred falls within the allowable sensitiv-
ity ranges (obtainable from the optimization), both DMUs
will experience increases in efficiency. Also, if the DMUs are
still inefficient after the transfer, then the efficiency scores of
none of the other DMUs will have changed (since they are
affected only by the frontier DMUs). In the case that the
resource is truly allocatable, and assuming that this trans-
fer does not have any negative impacts on other inputs and
outputs, it would appear that the transfer should clearly be
undertaken. Of course, if this transfer were to result in one
or both of the DMUs k1 or k2 moving to the efficient fron-
tier, or if either is a frontier unit already, then the scores of
DMUs other than k1 and k2, may be affected negatively in
the process. In this situation, one would need to answer the
question as to whether the improvement in the efficiency of
one DMU at the expense of another is worthwhile.

It would appear that the investigation of reallocation of
a dual-role factor by looking at individual DMUs or pairs,
thereof, is not very instructive. There is no obvious method-
ology to help in deciding how much of the resource to take
from those with negative γ̂ − β̂ values and give to those
with positive values of this parameter. In the following sec-
tion, we choose the route of working with the aggregate
efficiency measure for the group of DMUs to facilitate this
reallocation.

3. Optimal allocation of a dual-role factor

Let {e∗
k}K

k=1 denote the set of optimal efficiency scores aris-
ing from problem (6) for a given current allocation {wk}K

k=1
of the dual-role factor. Furthermore, let K1, K2, K3 denote
those subsets of DMUs corresponding to cases 1, 2 and
3 above, respectively. Specifically, K1 denotes those DMUs
for which γ − β < 0, K2, those for which γ − β > 0, and
K3 those where γ − β = 0. Note that K = K1 ∪ K2 ∪ K3.
Consider the situation in which the total amount W of the

factor in question is such that it can be allocated, as would
be the case involving the awarding of research funds to
researchers. Also, to the extent that nursing programs are
generally managed under provincial (or state) authority, the
allocation of trainees to hospitals falls within the control
of that authority. Viewed this way, it is natural to seek an
optimal allocation of this factor.

We examine two forms of allocation of the dual-role fac-
tor. In the first model, we assume that given the distribution
{wk = w̄k}, the idea is to obtain a perturbation from the ex-
isting levels, possibly within fairly tight limits. In the second
model, we assume that the distribution is such that there are
no restrictions on the extent of reallocation allowed. Hence,
in this case, we proceed as if there were no a priori distribu-
tion, taking a zero-base approach.

We recognize that in some jurisdictions resources such
as nurse trainees may not presently be “allocated” by any
central authority. In such settings, the current research may
serve to motivate relevant authorities to consider viewing
the situation more along the lines of the discussion herein.
In the case of university research funding, the allocation is
only partially controllable. Awards committees for research
grants from a central government body such as NSERC
or SSHRC in Canada, or NSF in the USA, could benefit
from analysis of the type discussed herein, in making award
decisions to faculty members or university departments.

To facilitate the above, we propose that rather than being
concerned with the performance of each of the individual
DMUs (e.g., universities), one should concentrate on the
overall performance of the collection or aggregate of the
DMUs. The question then becomes “what allocation of
research funding to universities will result in the maximum
efficiency score for the collection of those DMUs?”

3.1. Model 1: Reallocation based on a perturbation
from an existing distribution

To address this question, we propose using an optimiza-
tion model in which we maximize the ratio of aggregate
output to aggregate (discretionary) input. In so doing, we
propose to leave the w̄k, k ∈ K3 at their current levels, since
they are at an equilibrium position relative to problem (2).
The idea is to reduce the levels of wk in K2 while increasing
those in K1. In addition, it is assumed that any multipli-
ers (µ, υ, γ, β) allowed in the evaluation must be such that
when applied to any given DMU, the resulting efficiency
score for that DMU will not exceed unity. We propose solv-
ing the following problem:

problem (8):

max
∑
k∈K1

[∑
r

µr yrk + αwk

]

+
∑
k∈K2

[∑
r

µr yrk − αwk

]
+

∑
k∈K3

[∑
r

µr yrk

]
,

(8a)
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subject to:
∑
k∈K

[∑
i

υixik

]
= 1, (8b)

∑
r

µr yrk + αwk −
∑

i

υixik ≤ 0, k ∈ K1,

(8c)∑
r

µr yrk − αwk −
∑

i

υixik ≤ 0, k ∈ K2,

(8d)∑
r

µr yrk −
∑

i

υixik ≤ 0, k ∈ K3, (8e)∑
k∈K1∪K2

wk = W̄ , (8f)

w̄k ≤ wk ≤ w∪
k , k ∈ K1, (8g)

wL
k ≤ wk ≤ w̄k, k ∈ K2, (8h)

µr , υi, α, wk ≥ 0. (8i)

In problem (8) we use the multiplier α in place of γ − β, and
its value is the same in both groups K1 and K2. We argue that
the marginal worth of one hospital trainee or one monetary
unit of research funding is the same whether it is behaving
more like an output than an input or vice versa. An alter-
native view of the dual-role factor, e.g., research income in
Beasley’s case, is to regard it as having two components: a
positive component (to be considered as an output), and
a negative component (to be treated as a nondiscretionary
input). Hence, we may view this factor as a dual-component
variable vector (ak, bk) for each DMU. For DMUs in K1,
(ak, bk) = (wk, 0), for those in K2, (ak, bk)=(0, wk), and in
K3, (ak, bk) = (0, 0). Thus, we can argue that we are apply-
ing the same multiplier α to the vector component (ak, bk)
in all DMUs.

The objective here is to optimize the ratio of aggregate
outputs to aggregate inputs. In the usual manner, we re-
place the ratio by the aggregate output component of Equa-
tion (8) as the objective function, and restrict the aggre-
gate inputs to equal unity, as per Equation (8). Constraints
(8c), (8d), (8e) are the usual requirements that the effi-
ciency scores for the individual DMUs not exceed unity,
as discussed above. Constraint (8f) requires that the total
amount of the factor in the two groups K1 and K2 is equal to
W̄ = W − ∑

k∈K3
w̄k. Constraint (8g) restricts the amount

of the factor allocated to members of group K1 to be at least
as much w̄k as is currently the case, and no more than some
upper limit w∪

k . We assume that an appropriate w∪
k would

be chosen by the organization. Constraint (8h) has a sim-
ilar rationale for members of K2. It might be argued that
the upper bounds in the case of members of K1, for exam-
ple, should be a function of the ranges of optimality for the
optimal values γ̂ − β̂ computed. As discussed earlier, sen-
sitivity analysis reports within standard optimization soft-
ware would generally provide such ranges. Of course, even
if an upper bound exceeds the limits of such ranges, this
may not mean that efficiency scores will not still improve,
since the new optimal γ̂ − β̂ values may have the same sign.

We have not bothered to invoke these ranges directly, but
rather indirectly, in the analysis described in the following
section.

It is noted that problem (8) is nonlinear through the
products αwk. To obtain a linear formulation, perform the
change of variables:

δk = αwk (9)

At the same time, replace constraint (8f) by.

α
∑

k∈K1∪K2

wk = αW̄ ⇒
∑

k∈K1∪K2

δk = αW̄ .

Similarly, in Equations (8g) and (8h), multiply through by α.
Thus, problem (8) becomes the linear programming model:

problem (9):

max
∑
k∈K1

[ ∑
r

µr yrk + δk

]
+

∑
k∈K2

[ ∑
r

µr yrk − δk

]

+
∑
k∈K3

[ ∑
r

µr yrk

]
,

subject to:
∑

k

∑
i

υixik = 1,

∑
r

µr yrk + δk −
∑

i

υixik ≤ 0, k ∈ K1,∑
r

µr yrk − δk −
∑

i

υixik ≤ 0, k ∈ K2,∑
r

µr yrk −
∑

i

υixik ≤ 0, k ∈ K3, (10)∑
k∈K1∪K2

δk = αW̄ ,

αw̄k ≤ δk ≤ αw∪
k , k ∈ K1,

αwL
k ≤ δk ≤ αw̄k, k ∈ K2,

µr , υi, α, δk ≥ 0.

We note that from the optimal solution µ̂, υ̂, δ̂, α̂ to
problem (9), we obtain the optimal value of wk by way of
Equation (9), specifically:

ŵk = δ̂k/α̂.

In Section 4 we apply problem (9) to the problem of
(re)allocating research income across a set of university
departments.

It must be pointed out that whereas members of K3 were
in an equilibrium position (neither wanting to gain or to
lose resource wk), such may not, in fact, be the case for these
members after reallocation has occurred. The equilibrium
status of these DMUs only held up under the condition that
the members of K1 and K2 held their dual-role factor in
amounts w̄k. Any changes to these amounts can, of course,
impact on the optimal multipliers γ and β when evaluating
members of K3. It should also be pointed out that the effi-
ciency rating for any given member k ∈ K1, for example,
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may possibly worsen after reallocation, even though re-
sources are added to units where the impact on the output
side is more favorable than on the input side. Clearly, if a
DMU k ∈ K1 could gain an increase in wk, without other
DMU allocations changing, then the efficiency score for k
could not get worse. However, those other allocations can
change. This is generally due to the fact that the amount
of resource reallocated into or out of a particular DMU
may have exceeded the ranges of optimality as specified
in the linear programming sensitivity reports, as discussed
above. However, in adopting the objective of optimizing the
aggregate score for the entire set of DMUs, we are guar-
anteed that this overall score will be at least as high as
that generated by the existing allocation. At the same time,
by moving resources from group K2 to group K1, we are
moving in the obvious direction toward improvement in all
DMU scores, even if some DMUs do suffer a setback in this
process.

3.2. Model 2: Zero-base allocation of a dual-role factor

Suppose that despite the structure of an existing allocation
of the factor in question, we wish to derive some form of
best distribution. This is equivalent to starting from scratch,
as if no distribution existed at all. If we adopt the same argu-
ment as above, and set out to obtain an allocation based on
optimizing the aggregate score for the entire collection of
DMUs, we face the problem of not knowing which DMUs
will ultimately fall into groups K1 and K2. (Note that we
will ignore K3 here, but will discuss it later.) This is equiv-
alent to saying that we wish not only to decide on the size
wk of the allocation, but as well, whether that value is the
first or second component of the dual-component vector
(ak, bk).

One might argue that rather than add the complication of
having to decide a K1 versus K2 designation for each DMU,
a version of model 1 (problem (8)) could be solved, taking
the summation over the entire set of DMUs, and allowing
α to take either a negative or positive sign that would be
applied uniformly across the entire set. However, since ul-
timately the resulting allocations will be used in problem
(10), where for each DMU the choice of output or input
behavior is permitted, it is essential to imitate this behavior
at the aggregate level as well.

To facilitate assignment of DMUs to the two groups,
introduce the binary variable:

dk =
{

1, if DMUk belongs to group K1,

0, if DMU k belongs to group K2.

Now, the term
∑

k∈K1
αwk − ∑

k∈K2
αwk in the objective

function, becomes
∑

k∈K dkαwk − ∑
k∈K (1 − dk)αwk. This

latter expression reduces to what we want if we can de-
cide to which DMUs to assign dk = 1, and to which
dk = 0. The following nonlinear mixed-integer program-

ming model captures this idea:

problem (10):

max
∑
k∈K

∑
r

µr yrk +
∑
k∈K

dkαwk −
∑
k∈K

(1 − dk)αwk,

subject to:
∑
k∈K

∑
i

υixik = 1,

∑
r

µrrrk + dkαwk − (1 − dk)αwk

−
∑

i

υixik ≤ 0, k ∈ K, (11)∑
k∈K

wk = W,

wL ≤ wk ≤ w∪, k ∈ K,

µr , υi, α, wk ≥ 0, dk ∈ {0, 1},
We have imposed lower and upper bounds wL, w∪, re-

spectively, on the variables wk to ensure that each DMU has
some reasonable level of the factor assigned to it. Neither
here nor in the previous subsection, have we addressed the
issue as to how the other outputs (the three student–related
factors) might be influenced by changes in the level of the
research income that a department receives. Clearly, if in
the reallocation exercise it is the case that a department
is left with fewex resources than is necessary to support
those other outputs, the model results might be brought
into question. The imposed bounds wL, w∪ should then
be set in a way that respects current levels of those other
outputs.

Proceeding as before, and using the change of variables
δk = αwk, the expression dkαwk becomes dkδk. To remove
the remaining nonlinearity, define a further transformation
of variables:

φk = dkδk, (12)

and impose the following restrictions:

φk ≤ Mdk, (13a)
φk ≤ δk, (13b)
δk ≤ φk + M(1 − dk). (13c)

Here, M denotes a large positive number.
From Equations (13(a)–13(c)) we note that if dk = 0,

then φk = 0, and if dk = 1 then φk = δk. Hence, in problem
(10) the term dkαwk − (1 − dk)αwk becomes 2dkδk − δk. If
dk = 1, this expression reduces to 2φk − δk = 2δk − δk = δk.
If dk = 0, then the expression reduces to −δk. Thus, letting
K1 denote those DMUs for which dk = 1, and K2 the com-
pliment of K1, the expression:∑

k∈K

dkαwk −
∑
k∈K

(1 − dk)αwk,

reduces to ∑
k∈K1

δk −
∑
k∈K2

δk.
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The “zero-base” form of problem (9), namely the linearized
version of problem (10), then becomes:

problem (11):

max
∑
k∈K

∑
r

µr yrk + 2
∑
k∈K

φk −
∑
k∈K

δk,

subject to :
∑
k∈K

∑
i

υixik = 1,

∑
r

µr yrk + 2φk − δk −
∑

i

υixik ≤ 0, k ∈ K,∑
k∈K

δk = αW, (14)

αwL ≤ δk ≤ αw∪, k ∈ K,

φk ≤ Mdk,

φk ≤ δk,

δk ≤ φk + M(1 − dk),
µr , υi, α, δk, φk ≥ 0, dk ∈ {0, 1},

We point out that problem (11) is adaptable enough that
other practical restrictions could also be imposed. One may,
for example, wish to find a reallocation that would guaran-
tee that each DMU has a resulting efficiency score not lower
than some percentage (e.g., 95%) of its current standing.
Such practical considerations are particular to the problem
being studied, and will not be pursued herein.

In the following section, we use a portion of the data
from Beasley (1990, 1995), in the context of the above
development.

4. Dual-role factors: an illustration

4.1. Background

In this section we examine the modeling of dual-role fac-
tors in the context of comparing universities as discussed in
Beasley (1990, 1995). Beasley studies both Chemistry and
Physics departments at 50 UK universities, deriving effi-
ciency scores that provide an overall ranking of those de-
partments. A portion of the data for Physics departments,
recreated from Beasley (1990, p. 174), is displayed here as
Table 1. It is noted that for purposes of our analysis, we
have excluded from the output set the four ratings labeled
as “star,” A+, A, A− in Beasley’s original data. We use the
three inputs, general expenditure, equipment expenditure,
and research income. Outputs consist of research income,
and the three student groups.

Our purpose is not to compare our efficiency results with
those of Beasley, but rather to use his work as a backdrop
for illustrating the required analysis when a dual-role factor
is present. Beasley makes the compelling argument that re-
search income constitutes both an output and an input. On
the output side, it is a proxy for quality of the research pro-
gram, and the quality of the faculty whose research resulted
in them being able to acquire that income. On the input side,
this factor supports the generation of other outputs (e.g., it
provides support to graduate students).

Table 1. Data for Physics departments from Beasley (1990)

Gen.exp Equip.exp. Res.inc. UG PGT PGR
DMU (I1) (I2) (I3,O1) (O2) (O3) (O4)

University 1 528 64 254 145 0 26
University 2 2605 301 1485 381 16 54
University 3 304 23 45 44 3 3
University 4 1620 485 940 287 0 48
University 5 490 90 106 91 8 22
University 6 2675 767 2967 352 4 166
University 7 422 0 298 70 12 19
University 8 986 126 776 203 0 32
University 9 523 32 39 60 0 17
University 10 585 87 353 80 17 27
University 11 931 161 293 191 0 20
University 12 1060 91 781 139 0 37
University 13 500 109 215 104 0 19
University 14 714 77 269 132 0 24
University 15 923 121 392 135 10 31
University 16 1267 128 546 169 0 31
University 17 891 116 925 125 0 24
University 18 1395 571 764 176 14 27
University 19 990 83 615 28 36 57
University 20 3512 267 3182 511 23 153
University 21 1451 226 791 198 0 53
University 22 1018 81 741 161 5 29
University 23 1115 450 347 148 4 32
University 24 2055 112 2945 207 1 47
University 25 440 74 453 115 0 9
University 26 3897 841 2331 353 28 65
University 27 836 81 695 129 0 37
University 28 1007 50 98 174 7 23
University 29 1188 170 879 253 0 38
University 30 4630 628 4838 544 0 217
University 31 977 77 490 94 26 26
University 32 829 61 291 128 17 25
University 33 898 39 327 190 1 18
University 34 901 131 956 168 9 50
University 35 924 119 512 119 37 48
University 36 1251 62 563 193 13 43
University 37 1011 235 714 217 0 36
University 38 732 94 297 151 3 23
University 39 444 46 277 49 2 19
University 40 308 28 154 57 0 7
University 41 483 40 531 117 0 23
University 42 515 68 305 79 7 23
University 43 593 82 85 101 1 9
University 44 570 26 130 71 20 11
University 45 1317 123 1043 293 1 39
University 46 2013 149 1523 403 2 51
University 47 992 89 743 161 1 30
University 48 1038 82 513 151 13 47
University 49 206 1 72 16 0 6
University 50 1193 95 485 240 0 32

4.2. Analysis of efficiency

4.2.1. Current research income allocation
Problem (6) was applied to the data of Table 1 to deter-
mine to which category, K1, K2, K3, each university belongs.
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Table 2. Efficiency scores and output/input behavior

DMU Efficiency γ β

University 1 1.000 0.000 00 0.000 97
University 2 0.640 0.000 06 0.000 00
University 3 0.810 0.000 00 0.003 75
University 4 0.686 0.000 10 0.000 00
University 5 1.000 0.000 00 0.002 18
University 6 1.000 0.000 23 0.000 00
University 7 1.000 0.000 41 0.000 00
University 8 0.812 0.000 17 0.000 00
University 9 1.000 0.000 00 0.004 17
University 10 0.907 0.000 79 0.000 00
University 11 0.828 0.000 00 0.001 94
University 12 0.709 0.000 28 0.000 00
University 13 0.772 0.000 21 0.000 00
University 14 0.703 0.000 00 0.000 02
University 15 0.688 0.000 18 0.000 00
University 16 0.520 0.000 11 0.000 00
University 17 0.819 0.000 67 0.000 00
University 18 0.628 0.000 36 0.000 00
University 19 1.000 0.000 14 0.000 00
University 20 0.898 0.000 11 0.000 00
University 21 0.674 0.000 00 0.000 05
University 22 0.717 0.000 51 0.000 00
University 23 0.563 0.000 00 0.000 17
University 24 1.000 0.000 34 0.000 00
University 25 1.000 0.000 30 0.000 00
University 26 0.565 0.000 16 0.000 00
University 27 0.855 0.000 15 0.000 00
University 28 1.000 0.000 00 0.001 15
University 29 0.825 0.000 14 0.000 00
University 30 0.930 0.000 12 0.000 00
University 31 0.776 0.000 69 0.000 00
University 32 0.867 0.000 00 0.000 21
University 33 1.000 0.000 00 0.000 00
University 34 1.000 0.000 65 0.000 00
University 35 1.000 0.000 14 0.000 00
University 36 0.737 0.000 00 0.000 87
University 37 0.831 0.000 16 0.000 00
University 38 0.806 0.000 12 0.000 00
University 39 0.790 0.000 00 0.000 03
University 40 0.741 0.000 02 0.000 00
University 41 1.000 0.000 99 0.000 00
University 42 0.841 0.000 00 0.000 13
University 43 0.900 0.000 00 0.003 04
University 44 1.000 0.000 00 0.000 00
University 45 0.889 0.000 11 0.000 00
University 46 0.851 0.000 00 0.000 00
University 47 0.688 0.000 52 0.000 00
University 48 0.909 0.000 00 0.000 94
University 49 1.000 0.000 00 0.019 45
University 50 0.835 0.000 01 0.000 00

The results are displayed in Table 2. We note that K1 = 31,
K2 = 16, and K3 = 3. Recall that the DMUs in K1 are those
wherein the research income is behaving like an output, and
where more of such income would improve the efficiencies
of the members of that set. Those in K2 could forfeit re-

search income and in the process improve their efficiencies.
The three universities in K3 (namely universities 33, 44 and
46), are in equilibrium.

4.2.2. Reallocation of research income
Table 3 provides the results from applying problem (9).
In the case of universities in group K1, for example, we
have imposed lower limits on research income equal to
the current allocations (this prevents less income being as-
signed to those DMUs than they possess at present). In
theory, upper limits should be imposed that reflect ranges
of optimality as per the sensitivity analysis discussed ear-
lier. However, as discussed, such ranges may be too restric-
tive, and may not properly reflect the full scope for changes
in the reallocation process. As an alternative, we have im-
posed on the members of both K1 and K2 limits that per-
mit up to a 10% change in the allocation of the research
income.

The table displays the current income allocation and the
corresponding efficiency score achieved for each DMU. As
well, the proposed reallocation and the resulting efficiency
are given. The ratio of the new and current efficiency scores
has been computed, as a signal for the direction of any
efficiency shift (increased, decreased, stayed the same) ex-
perienced by each university in the reallocation process. In
most cases, the outcome has been either to leave the DMU
at its existing level or result in an increase. In a few cases,
however, e.g., university 12, the efficiency score actually de-
creased. Note that in this case, there was no change in its
research income, yet due to the reallocation to other DMUs,
its score has dropped slightly.

A further analysis was carried out, permitting a maxi-
mum of only a 5% change in the income allocation. Ta-
ble 4 demonstrates that in this case, no DMU suffered in
terms of its efficiency rating experiencing a drop. We have
not provided the corresponding reallocation of the research
income.

4.2.3. Zero-base reallocation
Table 5 displays the outcome from applying problem (11).
The table shows the current and recommended research in-
come levels needed to provide the optimal aggregate perfor-
mance of the group. Under the column labeled “Binary d,”
the designation of each DMU as to its input versus out-
put behavior appears. It is observed that 20% or 10 of the
DMUs have d = 1 (output behavior), with the remainder
exhibiting input behavior. Based on the recommended re-
search incomes, individual DEA analyses were carried out
using problem (6), and the resulting efficiency scores (“cur-
rent efficiencies”) are also displayed. It is noted that 80% of
the efficiency scores either improved or remained the same,
and 20% deteriorated under the reallocation. The average
of the efficiency scores rose from 0.84 to 0.86. We have not
bothered to impose lower and upper limits on the research
income, as called for in the modeling, since these would
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Table 3. Reallocation of research income (maximum 10%)

Cur. Cur. Rec. New New effic./ Income
DMU inc. effic. inc. effic. cur. effic. chg

University 1 254 1.0000 254 1.0000 1.000 0
University 2 1485 0.6397 1485 0.6397 1.000 0
University 3 45 0.8098 40.5 0.8182 1.010 −4.5
University 4 940 0.6857 940 0.6857 1.000 0
University 5 106 1.0000 95.4 1.0000 1.000 −10.6
University 6 2967 1.0000 3181.2 1.0000 1.000 214.2
University 7 298 1.0000 298 1.0000 1.000 0
University 8 776 0.8119 776 0.8119 1.000 0
University 9 39 1.0000 35.1 1.0000 1.000 −3.9
University 10 353 0.9066 353 0.9066 1.000 0
University 11 293 0.8277 263.7 0.8783 1.061 −29.3
University 12 781 0.7093 781 0.7076 0.998 0
University 13 215 0.7721 215 0.7721 1.000 0
University 14 269 0.7029 269 0.7029 1.000 0
University 15 392 0.6883 392 0.6883 1.000 0
University 16 546 0.5197 546 0.5197 1.000 0
University 17 925 0.8195 925 0.8195 1.000 0
University 18 764 0.6278 764 0.6278 1.000 0
University 19 615 1.0000 676.5 1.0000 1.000 61.5
University 20 3182 0.8980 3182 0.8955 0.997 0
University 21 791 0.6736 791 0.6744 1.001 0
University 22 741 0.7167 741 0.7167 1.000 0
University 23 347 0.5627 312.3 0.5724 1.017 −34.7
University 24 2945 1.0000 2945 1.0000 1.000 0
University 25 453 1.0000 453 1.0000 1.000 0
University 26 2331 0.5654 2331 0.5654 1.000 0
University 27 695 0.8555 695 0.8546 0.999 0
University 28 98 1.0000 88.2 1.0000 1.000 −9.8
University 29 879 0.8250 879 0.8250 1.000 0
University 30 4838 0.9300 4838 0.9233 0.993 0
University 31 490 0.7759 490 0.7711 0.994 0
University 32 291 0.8675 261.9 0.8909 1.027 −29.1
University 33 327 1.0000 327 1.0000 1.000 0
University 34 956 1.0000 956 1.0000 1.000 0
University 35 512 1.0000 512 1.0000 1.000 0
University 36 563 0.7365 506.7 0.7961 1.081 −56.3
University 37 714 0.8308 714 0.8308 1.000 0
University 38 297 0.8064 297 0.8064 1.000 0
University 39 277 0.7896 277 0.7898 1.000 0
University 40 154 0.7414 154 0.7414 1.000 0
University 41 531 1.0000 531 1.0000 1.000 0
University 42 305 0.8410 274.5 0.8460 1.006 −30.5
University 43 85 0.9001 76.5 0.9121 1.013 −8.5
University 44 130 1.0000 130 1.0000 1.000 0
University 45 1043 0.8885 1043 0.8885 1.000 0
University 46 1523 0.8513 1523 0.8513 1.000 0
University 47 743 0.6884 743 0.6884 1.000 0
University 48 513 0.9094 461.7 0.9721 1.069 −51.3
University 49 72 1.0000 64.8 1.0000 1.000 −7.2
University 50 485 0.8355 485 0.8355 1.000 0

need to be selected by those knowledgeable of the particu-
lar problem setting. As indicated in the earlier section, one
could further restrict problem (11) to require that the score
for each DMU not decrease. More generally, constraints

Table 4. Efficiency change (5% max reallocation)

DMU Cur. effic. New effic. New effic./cur. effic.

University 1 1.000 1.000 1.000
University 2 0.640 0.640 1.000
University 3 0.810 0.814 1.005
University 4 0.686 0.686 1.000
University 5 1.000 1.000 1.000
University 6 1.000 1.000 1.000
University 7 1.000 1.000 1.000
University 8 0.812 0.812 1.000
University 9 1.000 1.000 1.000
University 10 0.907 0.907 1.000
University 11 0.828 0.854 1.031
University 12 0.709 0.709 1.000
University 13 0.772 0.772 1.000
University 14 0.703 0.703 1.000
University 15 0.688 0.688 1.000
University 16 0.520 0.520 1.000
University 17 0.819 0.819 1.000
University 18 0.628 0.628 1.000
University 19 1.000 1.000 1.000
University 20 0.898 0.898 1.000
University 21 0.674 0.674 1.000
University 22 0.717 0.717 1.000
University 23 0.563 0.566 1.005
University 24 1.000 1.000 1.000
University 25 1.000 1.000 1.000
University 26 0.565 0.565 1.000
University 27 0.855 0.855 1.000
University 28 1.000 1.000 1.000
University 29 0.825 0.825 1.000
University 30 0.930 0.946 1.017
University 31 0.776 0.776 1.000
University 32 0.867 0.874 1.008
University 33 1.000 1.000 1.000
University 34 1.000 1.000 1.000
University 35 1.000 1.000 1.000
University 36 0.737 0.767 1.041
University 37 0.831 0.831 1.000
University 38 0.806 0.806 1.000
University 39 0.790 0.790 1.000
University 40 0.741 0.741 1.000
University 41 1.000 1.000 1.000
University 42 0.841 0.843 1.002
University 43 0.900 0.906 1.007
University 44 1.000 1.000 1.000
University 45 0.889 0.889 1.000
University 46 0.851 0.851 1.000
University 47 0.688 0.688 1.000
University 48 0.909 0.933 1.026
University 49 1.000 1.000 1.000
University 50 0.835 0.835 1.000

can be imposed that would prevent scores from declining
by more than say some desired percentage.

We emphasize that this analysis is not intended to repre-
sent an informed or in-depth study of the problem at hand,
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Table 5. Zero-base allocation of research income

Recom. Current Binary Orig. Current
DMU inc. inc. Change d effic. effic.

University 1 1375 254 1121 0 1.000 1.000
University 2 0 1485 −1485 1 0.640 1.000
University 3 105 45 60 0 0.810 0.706
University 4 602 940 −338 1 0.686 0.719
University 5 211 106 105 0 1.000 0.990
University 6 0 2967 −2967 0 1.000 1.000
University 7 252 298 −46 0 1.000 1.000
University 8 638 776 −138 0 0.812 0.820
University 9 1213 39 1174 0 1.000 0.726
University 10 795 353 442 0 0.907 0.910
University 11 1818 293 1525 0 0.828 0.748
University 12 195 781 −586 0 0.709 0.805
University 13 1316 215 1101 0 0.772 0.825
University 14 798 269 529 0 0.703 0.711
University 15 2128 392 1736 0 0.688 0.755
University 16 385 546 −161 1 0.520 0.543
University 17 5178 925 4253 0 0.819 0.970
University 18 294 764 −470 1 0.628 0.670
University 19 737 615 122 0 1.000 1.000
University 20 1706 3182 −1476 1 0.898 0.862
University 21 930 791 139 0 0.674 0.677
University 22 0 741 −741 0 0.717 1.000
University 23 183 347 −164 1 0.563 0.648
University 24 574 2945 −2371 1 1.000 0.485
University 25 469 453 16 0 1.000 1.000
University 26 40 2331 −2291 1 0.565 0.961
University 27 844 695 149 0 0.855 0.853
University 28 726 98 628 0 1.000 0.810
University 29 0 879 −879 0 0.825 1.000
University 30 407 4838 −4431 1 0.930 1.000
University 31 160 490 −330 0 0.776 1.000
University 32 386 291 95 0 0.867 0.871
University 33 887 327 560 0 1.000 1.000
University 34 1138 956 182 0 1.000 1.000
University 35 906 512 394 0 1.000 1.000
University 36 613 563 50 0 0.737 0.744
University 37 757 714 43 0 0.831 0.853
University 38 187 297 −110 0 0.806 0.938
University 39 698 277 421 0 0.790 0.814
University 40 340 154 186 0 0.741 0.741
University 41 179 531 −352 0 1.000 1.000
University 42 812 305 507 0 0.841 0.856
University 43 620 85 535 0 0.900 0.661
University 44 2733 130 2603 0 1.000 1.000
University 45 432 1043 −611 0 0.889 0.935
University 46 930 1523 −593 1 0.851 0.852
University 47 213 743 −530 0 0.688 0.701
University 48 279 513 −234 0 0.909 1.000
University 49 1595 72 1523 0 1.000 1.000
University 50 896 485 411 0 0.835 0.838

Average 0.840 0.860

but rather to demonstrate the application of the model. The
important feature of the models herein is that they provide
the capability to aid managers in performing appropriate
allocations of resources.

5. Conclusions

This paper has presented a methodology for dealing with
those situations where a factor can simultaneously play
both an input and output role. By treating such a factor
on the input side as being nondiscretionary, the model de-
veloped here can be used to determine in which status that
factor dominates within each DMU. Specifically, the model
determines whether in a DMU the factor is behaving pre-
dominantly like an input, hence the DMU would benefit
from having less of the factor, like an output where more of
the factor is desirable, or where it is in equilibrium. We con-
nect these ideas to those involving increasing, decreasing
and constant returns to scale. Examples of factors that play
this dual-role are: trainees in organizations, such as nurses,
medical students, and doctoral students; awards to scholars
or university departments; etc. We apply the model to the
analysis of a set of university departments as per Beasley
(1990, 1995).

We also develop the appropriate model structures for
reallocation of such dual-role factors across DMUs in a
manner that optimizes the aggregate efficiency of those
DMUs. In some settings, reallocation of such a factor is
at the discretion of a central body, and the models can aid
in that reallocation exercise. In others, where there is no
such central authority, the models can still serve to move
towards a better allocation than presently exists. We present
two such structures; the first involves reallocation from an
existing allocation, and the second, a form of zero-base
allocation.

We point out that the development herein pertains to
a single dual-role factor. Extension to multiple factors is
straightforward and hence is omitted.
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