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Abstract

As an extension to data envelopment analysis (DEA), cross-efficiency evaluation not only provides a ranking among the

decision-making units (DMUs) but also eliminates unrealistic DEA weighting schemes without requiring a priori information

on weight restrictions. A factor that possibly reduces the usefulness of the cross-efficiency evaluation method is that the cross-

efficiency scores may not be unique due to the presence of alternate optima. As a result, it is recommended that secondary

goals be introduced in cross-efficiency evaluation. This paper seeks to extend the model of Doyle and Green [1994. Efficiency

and cross efficiency in DEA: Derivations, meanings and the uses. Journal of the Operational Research Society 45

(5), 567–578], by introducing a number of different secondary objective functions. The models are illustrated with examples.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Data envelopment analysis (DEA) provides a
relative efficiency measure for peer decision-making
units (DMUs) with multiple inputs and outputs.
While DEA has proved to be an effective approach
in identifying the best practice frontiers, its flex-
ibility in weighting multiple inputs and outputs and
its nature of self-evaluation have been criticized.
The cross-evaluation method was developed as a
DEA extension tool that can be utilized to identify
best-performing DMUs and to rank DMUs using
cross-efficiency scores that are linked to all DMUs

(Sexton et al., 1986). The main idea of cross
evaluation is to use DEA in a peer evaluation
instead of a self-evaluation mode. There are two
principal advantages of cross evaluation: (1) it
provides a unique ordering of the DMUs, and
(2) it eliminates unrealistic weight schemes without
requiring the elicitation of weight restrictions from
application area experts (Anderson et al., 2002).

Cross-efficiency evaluation has been used in
various applications, e.g., efficiency evaluations of
nursing homes (Sexton et al., 1986), R&D project
selection (Oral et al., 1991), preference voting
(Green et al., 1996) and others. Some studies on
other DEA issues are very relevant with the cross-
efficiency concept (see, e.g., Nicole et al., 2002;
Beasley, 2003; Mavrotas and Trifillis, 2006).

However, as noted in Doyle and Green (1994), the
non-uniqueness of the DEA optimal weights possibly
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reduces the usefulness of cross efficiency. Specifically,
cross-efficiency scores obtained from the original
DEA are generally not unique, and depending on
which of the alternate optimal solutions to the DEA
linear programs is used, it may be possible to
improve a DMU’s (cross efficiency) performance
rating, but generally only by worsening the ratings of
others. Sexton et al. (1986) and Doyle and Green
(1994) propose the use of secondary goals to deal
with the non-uniqueness issue. They present aggres-

sive and benevolent model formulations. In the case
of the benevolent model, for example, the idea is to
identify optimal weights that maximize not only the
efficiency of a particular DMU under evaluation but
also the average efficiency of other DMUs. In the
case of the aggressive model, one seeks weights that
minimize the average efficiency of those other units.

The purpose of the current paper is to extend the
model of Doyle and Green (1994) by introducing
various secondary objective functions. Each new
secondary objective function represents an efficiency
evaluation criterion. With these new models, one
can compare the efficiency scores and obtain a
better picture of cross-efficiency stability with
respect to multiple DEA weights.

The rest of this paper is organized as follows.
Section 2 presents the cross-efficiency evaluation
approach. New models are introduced in Section 3.
Section 4 demonstrates the models with two data
sets. Conclusions are given in Section 5.

2. Cross-efficiency evaluation

Suppose we have a set of n DMUs, and each
DMUj produces s different outputs from m different
inputs. The ith input and rth output of DMUjðj ¼

1; 2; . . . ; nÞ are denoted by xijði ¼ 1; . . . ;mÞ and
yrjðr ¼ 1; . . . ; sÞ, respectively. Cross efficiency is
often calculated as a two-phase process. The first
phase is calculated using the standard DEA model,
e.g., the CCR model of Charnes et al. (1978).

Specifically, for any DMUd under evaluation, the
efficiency score E�dd under the CCR model is given
by the following optimization problem:

E�dd ¼Max Edd ¼

Ps
r¼1urdyrdPm
i¼1vidxid

s:t: Edj ¼

Ps
r¼1urdyrjPm
i¼1vidxij

p1; j ¼ 1; 2; . . . ; n,

urdX0; r ¼ 1; . . . ; s,

vidX0; i ¼ 1; . . . ;m, (1)

where vid and urd represent the ith input and rth
output weights for DMUd.

The cross efficiency of DMUj, using the weights
that DMUd has chosen in model (1), is then

Edj ¼

Ps
r¼1u

�
rdyrjPm

i¼1v
�
idxij

; d; j ¼ 1; 2; . . . ; n, (2)

where (*) denotes optimal values in model (1). For
DMUj (j ¼ 1,2,y,n), the average of all Edjðd ¼

1; 2; . . . ; nÞ;Ej ¼ 1=n
Pn

d¼1Edj , referred to as the
cross-efficiency score for DMUj.

We point out that the DEA model (1) is
equivalent to the following linear program:

MaxEdd ¼
Xs

r¼1
urdyrd

s:t:
Xm

i¼1
vidxid ¼ 1,

Xs

r¼1
urdyrd �

Xm

i¼1
vidxijp0; j ¼ 1; . . . ; n,

urd ; vidX0. (3)

Model (3) can also be expressed equivalently in
the following deviation variable form:

Min ad

s:t:
Xm

i¼1
vidxid ¼ 1

Xs

r¼1
urdyrj �

Xm

i¼1
vidxij þ aj ¼ 0; j ¼ 1; . . . ; n,

ur; vi; ajX0 for all r; i; j, (4)

where ad is the deviation variable for DMUd and aj

the deviation variable for the jth DMU. Under this
model, DMUd is efficient if and only if a�d ¼ 0. If
DMUd is not efficient, then its efficiency score is
1� a�d (ad can be regarded as a measure of
‘‘inefficiency’’). We refer to the deviation variable
aj as the d-inefficiency of DMU j.

Note that optimal weights obtained from model
(3) (or model (4)) are usually not unique. As a
result, the cross efficiency defined in (2) is arbitrarily
generated, depending on the optimal solution
arising from the particular software in use
(Despotis, 2002). To resolve this ambiguity, a
secondary goal in cross-efficiency evaluation is
introduced. As discussed above, Doyle and Green
(1994) present benevolent and aggressive model
formulations that seek to identify optimal weights
that not only maximize the efficiency of a particular
DMU under evaluation but also minimize (max-
imize) the average efficiency of other DMUs. One
form of the benevolent model focuses on finding a
multiplier bundle that maximizes the ratio of
outputs to inputs for the ‘‘composite’’ DMU made
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up of n�1 peer units. (The composite DMU is
created by aggregating the outputs and inputs for all
n�1 peer units.) The aggressive form of this would
involve minimizing the ratio for the composite unit.

Let us now examine various forms of secondary
goals for aiding in cross evaluation. For purposes of
presentation, it is convenient to use model (4) as a
basis for this discussion.

3. Alternative secondary goals

Let the (CCR) inefficiency of DMUd be a�d .
We first consider the following model where
the secondary goal is to minimize the sum of
‘‘inefficiencies’’.

3.1. Minimizing total deviation from the ideal point

The ideal point is defined as that multiplier
bundle ðû; v̂Þ for which every DMU is efficient,
that is

Ps
r¼1u

d
r yrj=

Pm
i¼1vd

i xij ¼ 1, or
Ps

r¼1ud
r yrj�Pm

i¼1v
d
i xij ¼ 0. In the absence of such an ideal

point, a reasonable objective is to treat aj as goal-
achievement variables, and for each DMU d, derive
a multiplier set that is an alternative optimum for
that DMU, and that at the same time minimizesPn

j¼1aj. Specifically, our ideal point model is the

following goal programming problem:

Min
Xn

j¼1
a0j

s:t:
Xs

r¼1
ud

r yrj �
Xm

i¼1
vd

i xij þ a0j ¼ 0; j ¼ 1; . . . ; n,
Xm

i¼1
vd

i xid ¼ 1,
Xs

r¼1
ud

r yrd ¼ 1� a�d ,

ud
r ; v

d
i ; a

0

jX0; for all i; r; j. (5)

In model (5), minimizing the sum of the
d-inefficiencies a0j (j ¼ 1,y,n) is intuitively appeal-
ing, and in the spirit of all DMUs attempting to
maximize their respective performances. This model
may be especially applicable to a system consisting
of a set of units that seek to maximize their
efficiency, such as would be the case in a supply
chain setting where a set of business entities are
involved in the design, development, manufacturing
and distribution of products. Here it is assumed that
each member of the supply chain is acting in its own
self-interest, without being concerned for the other
members of the supply chain. When the DMUs are
assumed to be in a non-cooperative and fully

competitive mode, this approach to cross evaluation
would be appropriate.

We state without proof the following theorem.
Theorem 3.1. Model (5) is equivalent to a form of

the Doyle and Green (1994) model.

3.2. Minimizing the maximum d-efficiency score

Troutt (1997) developed a maximum efficiency
ratio DEA model in an effort to further prioritize
the efficient DMUs using a common set of weights.
He further shows that such a model may be
regarded as a maximum likelihood procedure for a
family of expert performance densities. In this
regard, one might consider as a secondary goal,
solving the model:

Min Max a0j

s:t:
Xs

r¼1
ud

r yrj �
Xm

i¼1
vd

i xij þ a0j ¼ 0; j ¼ 1; . . . ; n,
Xm

i¼1
vd

i xid ¼ 1,
Xs

r¼1
ud

r yrd ¼ 1� a�d ,

ud
r ; v

d
i ; a
0
jX0; for all i; r; j. (6)

Model (6) can be expressed equivalently in the
following form:

Min y

s:t:
Xs

r¼1
ud

r yrj �
Xm

i¼1
vd

i xij þ a0j ¼ 0; j ¼ 1; . . . ; n,
Xm

i¼1
vd

i xid ¼ 1,
Xs

r¼1
ud

r yrd ¼ 1� a�d ,

y� a0jX0; j ¼ 1; :::; n,

ud
r ; v

d
i ; a
0
jX0; for all i; r; j. (60)

In model (6), minimizing the maximal d-ineffi-
ciency a0j is related to maximizing the minimal
efficiency among n efficiencies as in Troutt (1997).
The above model derives a multiplier bundle that
affords the maximum possible score to the ‘‘worse’’-
performing DMU. In so doing, the resulting
efficiencies of the other DMUs may be forced to
be closer in value. Specifically, in attempting to
show this worst-performing DMU in its best
possible light, the scores of the other (better-
performing) DMUs may decrease, hence leading
to DMU performance levels that display less
variation than was previously the case. This
approach might be deemed appropriate in those
settings where a more cooperative situation prevails;
an example would be the evaluation of maintenance
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crews under a central authority, or bank branches
under a single corporate head, where the worst-
performing units would be given the least gap
possible between where they are and where they
need to be.

3.3. Minimizing the mean absolute deviation

In the spirit of seeking to minimize the variation
among the efficiencies of the DMUs, we propose
formalizing this concept through:

Min
1

n

Xn

j¼1
ja0j � a0j

s:t:
Xs

r¼1
ud

r yrj �
Xm

i¼1
vd

i xij þ a0j ¼ 0; j ¼ 1; . . . ; n,
Xm

i¼1
vd

i xid ¼ 1,
Xs

r¼1
ud

r yrd ¼ 1� a�d ,

ud
r ; v

d
i ; a
0
jX0; for all i; r; j, (7)

where a0 ¼ 1=n
Pn

j¼1a
0
j.

The objective function in Model (7) computes the
mean absolute deviation of a set of data, namely,
the average of the absolute deviations of data
points from their mean. Therefore, minimizing the
objective function tries to decrease the efficiency
difference among DMUs, which to some extent
demonstrates an equalitarian principle.

To show that this nonlinear model can be linearized,

let a0j ¼
1
2
ðja0j � a0j þ a0j � a0Þ and b0j ¼

1
2
ðja0j � a0j�

ða0j � a0ÞÞ. Then, model (7) becomes the following

linear programming problem:

Min
1

n

Xn

j¼1
ða0j þ b0jÞ

s:t:
Xs

r¼1
ud

r yrj �
Xm

i¼1
vd

i xij þ a0j ¼ 0; j ¼ 1; . . . ; n,
Xm

i¼1
vd

i xid ¼ 1,
Xs

r¼1
ud

r yrd ¼ 1� a�d ,

a0j � b0j ¼ a0j �
1

n

Xn

j¼1
a0j ; j ¼ 1; . . . ; n,

ud
r ; v

d
i ; a
0
j ; b
0
j ; a
0
jX0; for all i; r; j. (70)

Both models (60) and (70) are thus aimed at deriving
a set of weights ud, vd for which the d-efficiency scores
are as similar as possible. The latter model more
directly aims at equalizing the various efficiency scores,
as opposed to simply making the worst-performing
unit as well off as possible. In some respects, this
criterion would apply to the same settings as the model
of Section 3.2, but more overtly tries to make all units

as close as possible to being equally efficient. In a
situation where there was an allocatable resource such
as equipment for the maintenance crews, measuring
efficiency via the model of this section might tend to
result in the least amount of redistribution (to render
the DMUs equally efficient) in regard to that resource.

In the above models, when DMUd under evalua-
tion is changed (i.e., xid ; i ¼ 1; . . . ;m; yrd ; r ¼
1; . . . ; s and and are changed in the constraints),
different optimal solutions of vi

d and ur
d are

obtained. We obtain n optimal weight vectors
W �

d ¼ ðv
d�
1 ; . . . ; v

d�
m ; u

d�
1 ; . . . ; u

d�
s Þ, d ¼ 1; . . . ; n: Using

this W �
d , the cross efficiency for any DMUjðj ¼

1; 2; . . . nÞ is then calculated as

EjðW
�
dÞ ¼

Ps
r¼1u

d�
r yrjPm

i¼1v
d�
i xij

; d; j ¼ 1; 2; . . . ; n. (8)

For DMUjðj ¼ 1; 2; . . . nÞ, the average of all
EjðW

�
dÞ; d ¼ 1; . . . ; n; namely

Ej ¼
1

n

Xn

d¼1
EjðW

�
dÞ; j ¼ 1; 2; . . . ; n (9)

is our new cross-efficiency score for DMUj.

4. Illustration

4.1. Chinese cities

Table 1 provides 13 open coastal Chinese cities
and 5 Chinese special economic zones in 1989. Two
inputs and three outputs were chosen to character-
ize the technology of those cities/zones (see Zhu,
1998).

Input 1 (x1): Investment in fixed assets by state-
owned enterprises (10,000 RMB), where RMB is the
Chinese monetary unit;

Input 2 (x2): Foreign funds actually used (10,000
US$);

Output 1 (y1): Total industrial output value
(based on fixed prices of 1980) (10,000 RMB);

Output 2 (y2): Total value of retail sales (10,000
RMB);

Output 3 (y3): Handling capacity of coastal ports
(10,000 tones).

The second and third columns of Table 2 report
the CCR efficiency scores and rankings, respec-
tively. For this data set, all our models yield
identical cross-efficiency scores, reported in the
fourth column of Table 2. This is a good indication
that the cross-efficiency scores are unique or stable.
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4.2. Nursing homes

Sexton et al. (1986) considered a case of six
nursing homes whose input and output data for a
given year are reported in Table 3, where the input
and output variables are defined as follows:

StHr(x1): staff hours per day, including nurses,
physicians, etc.

Supp(x2): supplies per day, measured in thou-
sands of dollars
MCPD(y1): total medicare-plus medicaid-reim-
bursed patient days(0000)
PPPD(y2): total privately paid patient
days(0000).

Table 4 reports the results. The second column
reports the CCR efficiency scores. Columns 3–5
report the cross-efficiency scores based upon models
(5)–(7). It can be seen that models (5) and (7) yield
identical results. Note that model (5) actually uses
the benevolent criterion. This indicates that in this
case, the benevolent criterion also tries to make all
the cross-efficiency scores as closer as possible.

5. Conclusions

Because DEA weights are generally not unique,
the related cross efficiency may not be unique either.
It is this non-uniqueness phenomenon that can
undermine the usefulness of the cross-evaluation
method. This paper seeks to extend the model
of Doyle and Green (1994), in which the ultimate
cross efficiency of every DMU is achieved by
introducing a secondary objective function. In this
paper, different secondary objective functions are
used to determine the ultimate cross efficiency,
and the proposed models with their different

ARTICLE IN PRESS

Table 1

Chinese city data

DMU no. Cities/zones Input 1 Input 2 Output 1 Output 2 Output 3

1 Dalian 2874.8 16,738 160.89 80,800 5092

2 Qinhuangdao 946.3 691 21.14 18,172 6563

3 Tianjin 6854.0 43,024 375.25 144,530 2437

4 Qingdao 2305.1 10,815 176.68 70,318 3145

5 Yantai 1010.3 2099 102.12 55,419 1225

6 Weihai 282.3 757 59.17 27,422 246

7 Shanghai 17,478.6 116,900 1029.09 351,390 14,604

8 Lianyungang 661.8 2024 30.07 23,550 1126

9 Ningbo 1544.2 3218 160.58 59,406 2230

10 Wenzhou 428.4 574 53.69 47,504 430

11 Guangzhou 6228.1 29,842 258.09 151,356 4649

12 Zhanjiang 697.7 3394 38.02 45,336 1555

13 Beihai 106.4 367 7.07 8236 121

14 Shenzhen 4539.3 45,809 116.46 56,135 956

15 Zhuhai 957.8 16,947 29.20 17,554 231

16 Shantou 1209.2 15,741 65.36 62,341 618

17 Xiamen 972.4 23,822 54.52 25,203 513

18 Hainan 2192.0 10,943 25.24 40,267 895

Table 2

Chinese city results

DMU CCR score Rank Cross efficiency Rank

1 0.46907 11 0.44608 10

2 1 1 1 1

3 0.27791 15 0.24359 15

4 0.50222 8 0.45216 9

5 0.63108 7 0.60498 6

6 1 1 0.97223 2

7 0.35804 12 0.30466 12

8 0.49594 9 0.45446 8

9 0.65766 6 0.56927 7

10 1 1 0.88699 3

11 0.30097 14 0.27884 14

12 0.78661 4 0.65762 4

13 0.75144 5 0.60856 5

14 0.1382 18 0.12883 18

15 0.18671 17 0.16646 16

16 0.47037 10 0.38768 11

17 0.30594 13 0.28193 13

18 0.19526 16 0.15127 17

L. Liang et al. / Int. J. Production Economics 113 (2008) 1025–1030 1029
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objective functions can be applied under different
circumstances.
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Table 3

Nursing home data

DMU Inputs Outputs

StHr (x1) Supp (x2) MCPD (y1) PPPD (y2)

A 1.50 0.2 1.40 0.35

B 4.00 0.7 1.40 2.10

C 3.20 1.2 4.20 1.05

D 5.20 2.0 2.80 4.20

E 3.50 1.2 1.90 2.50

F 3.20 0.7 1.40 1.50

Table 4

Nursing home results

CCR Cross efficiency score based on

Model (5) Model (6) Model (7)

DMU1 1 1 1 1

DMU2 1 0.9547 0.9617 0.9547

DMU3 1 0.8864 0.8759 0.8864

DMU4 1 1 1 1

DMU5 0.9775 0.9742 0.9748 0.9742

DMU6 0.8675 0.8465 0.8499 0.8465
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