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Sensitivity analysis of DEA models for simultaneous
changes in all the data
LM Seiford1 and J Zhu2

1University of Massachusetts and 2Worcester Polytechnic Institute, USA

In data envelopment analysis (DEA) ef®cient decision making units (DMUs) are of primary importance as they de®ne the
ef®cient frontier. The current paper develops a new sensitivity analysis approach for the basic DEA models, such as,
those proposed by Charnes, Cooper and Rhodes (CCR), Banker, Charnes and Cooper (BCC) and additive models, when
variations in the data are simultaneously considered for all DMUs. By means of modi®ed DEA models, in which the
speci®c DMU under examination is excluded from the reference set, we are able to determine what perturbations of the
data can be tolerated before ef®cient DMUs become inef®cient. Our approach generalises the usual sensitivity analysis
approach developed in which perturbations of the data are only applied to the test DMU while all the remaining DMUs
remain ®xed. In our framework data are allowed to vary simultaneously for all DMUs across different subsets of inputs
and outputs. We study the relations of the infeasibility of modi®ed DEA models employed and the robustness of DEA
models. It is revealed that the infeasibility means stability. The empirical applications demonstrate that DEA ef®ciency
classi®cations are robust with respect to possible data errors, particularly in the convex DEA case.

Keywords: data envelopment analysis (DEA); ef®ciency; sensitivity analysis

Introduction

As a data-based method, the stability of data envelopment

analysis (DEA), has often been questioned. Since data can

be contaminated by statistical noise, a frequently asked

question is `To what extent can perturbations in the data

observations be tolerated before the DEA ef®ciency is

changed?' The issue of the robustness of DEA ef®ciency

models has been the subject of an extensive research effort

which has resulted in a number of sensitivity analysis

papers.

The ®rst DEA sensitivity analysis paper of Charnes

et al 1 examined change in a single output. This was

followed by a series of sensitivity analysis articles by

Charnes and Neralic2 in which they determine suf®cient

conditions, for a simultaneous change in all outputs and (or)

all inputs of an ef®cient decision making unit (DMU), which

preserve ef®ciency. All of these methods examine data

changes via updating the inverse of the basis matrix asso-

ciated with a speci®c ef®cient DMU.

As noted by Charnes et al 3, the suf®cient conditions

obtained from the above sensitivity analysis methods tend to

be too restrictive. Charnes et al 3 therefore provide a 1-norm

and 1 -norm to compute stability regions for ef®ciency

classi®cations under the additive model. Their method, in

fact, is based on a modi®cation of DEA models in which the

test DMU is excluded from the reference set. (see also

Charnes et al 4 for a different version).

More recently, Zhu5 employed the modi®ed CCR models

to determine necessary and suf®cient conditions for preser-

ving ef®ciency of the ef®cient DMUs under the CCR ratio

model (Charnes et al 6) when inputs and (or) outputs of the

test ef®cient DMU are changed. The method is generalised

in Seiford and Zhu7 to yield the entire (largest) stability

region which encompasses that of Charnes et al. 3

The above sensitivity analysis methods are based on a

basis matrix or modi®ed DEA models and were developed

for situations where variations in the data are only applied

to the test DMU. However, in reality, possible data errors

may occur for any DMU. Thompson et al 8 use the strong

complementary slackness condition (SCSC) multipliers to

analyse the stability of the CCR model when the data for all

ef®cient and all inef®cient DMUs are simultaneously chan-

ged in opposite directions. Nevertheless, their method is

dependent upon the particular SCSC solution employed.

Thompson et al 9 propose an approach to select a SCSC

solution when using their method, but the criteria are not

completely satisfying and the resulting analysis is inexact.

In this paper, we utilise the modi®ed DEA models to

study the stability of DEA scores when all the data

(including the ef®cient DMU under consideration and

others) are changed simultaneously. We consider a worst-

case analysis where the ef®ciency of the test DMU is
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deteriorating while the ef®ciencies of the other DMUs are

improving. For each ef®cient DMU being analyzed for

ef®ciency stability, we calculate a range of stability such

that all possible perturbations of the test DMU and the

remaining DMUs within the range preserve the dominance

of the test DMU, namely, the DMU under evaluation

remains a DEA frontier point. We may have different

ranges of stability for perturbations of different subsets of

outputs and (or) inputs. It is shown that our sensitivity

analysis approach generalises the methods of Charnes et

al 3 and Zhu5 to the situation where data variations are made

for all DMUs for any subset of inputs and outputs. It is also

shown that our sensitivity analysis method yields more exact

robust sensitivity analysis results as compared to those

obtained by using the Thompson et al 8 SCSC approach.

As ®rstly noted by Zhu,5 we may encounter infeasibility

in modi®ed DEA models when used to determine the

stability of ef®ciency classi®cations. Seiford and Zhu7

show that infeasibility means that the Charnes, Cooper

and Rhodes (CCR) ef®ciency6 of the test DMU remains

stable to data changes. Here we show that the result also

holds true under other DEA models (for example see the

Banker, Charnes and Cooper (BCC) model of Banker et

al 10 ) when all DMUs data change simultaneously.

The current article proceeds as follows: In the next

section, we review several sensitivity analysis approaches,

based on modi®ed DEA models when only the ef®cient

DMU under analysis changes its data. We then develop our

sensitivity analysis method for simultaneous data changes

in all DMUs. The sensitivity of the DEA CCR model6 and

of the DEA convex models (namely BCC model,10 and

additive model of Charnes et al 11 ) are investigated. We

discuss the sensitivity to simultaneous data variations of all

DMUs under two casesÐpercentage and absolute change

cases. We also explore the infeasibility of the modi®ed DEA

models. Finally, we apply the new sensitivity method to two

structurally different real world data sets. One is the Chinese

cities data set (Charnes et al 12 ) in which the CCR ef®ciency

scores are almost the same as the corresponding BCC

ef®ciency scores. The other is the Chinese textiles data set

(Zhu13 ) in which larger discrepancies between the CCR and

the BCC ef®ciency scores are discovered.

Precursors

Suppose we have a set of n DMUs. Each DMUj ( j� 1, 2,

. . . , n), produces s different outputs yrj (r� 1, 2, . . . , s)

utilizing m different inputs xij (i� 1, 2, . . . , m). Consider a

speci®c ef®cient DMUo among them (here the `ef®cient'

means that the radial optimal value is equal to one). Charnes

et al 3 provided the following linear programming problem,

a modi®ed DEA model, to study the sensitivity of ef®ciency

classi®cations in the additive model

y� � min y

subject to Pn
j�1
j 6�o

ljxij ÿ y4 xio i � 1; 2; . . . ;m;

Pn
j�1
j 6�o

ljyrj � y5 yro r � 1; 2; . . . ; s; �1�

Pn
j�1
j 6�o

lj � 1;

y; lj� j 6� o�5 0:

The optimal value y* is called the radius of stability

under the 1 -norm. The absolute increase of inputs and

absolute decrease of outputs are considered only for DMUo.

The constraint of
Pn

j�1; j 6�o lj � 1 was excluded in Charnes

et al 4 and the model was modi®ed to the case of percentage

change. If for each i and r, we use different yi and yr and

minimise
Pm

i�1 yi �
Ps

r�1 yr, then the optimal value is the

radius of stability under the 1-norm.

Zhu5 provided the following two linear programming

formulations to study the robustness of ef®cient DMUs

under the CCR model.

b�k � min bk for each k � 1; . . . ;m

subject to Pn
j�1
j 6�o

ljxkj 4bkxko

Pn
j�1
j 6�o

ljxij 4 xio i 6� k �2�

Pn
j�1
j 6�o

ljyrj 5 yro r � 1; 2; . . . ; s

bk; lj� j 6� o�5 0:

and

a�l � max al for each l � 1; 2; . . . ; s

subject to Pn
j�1
j 6�o

ljylj 5alylo

Pn
j�1
j 6�o

ljyrj 5 yro; r 6� l �3�

Pn
j�1
j 6�o

ljxij 4 xio i � 1; . . . ;m

al; lj� j 6� o�5 0:

Using the optimal values of bk
* (k� 1, 2, . . . , m), and al

*

(l� 1, 2, . . . , s), one can compute the upper and lower

boundaries of proportionate changes of inputs and outputs

while preserving the ef®ciency of DMUo. Seiford and Zhu7
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generalised the method to determine the exact stability

region for DMUo.

It can be seen that a unique feature of each of the above

methods is that DEA-like formulations in which the DMU

under evaluation is not included in the reference set are

employed to analyse the sensitivity and stability of the

ef®ciency classi®cations. It can also be seen that these

methods only consider DMUos data perturbations and

assume that all other DMUs data remain unchanged.

Simultaneous change in all the data

An increase of any output or a decrease of any input can not

worsen the ef®ciency of DMUo. Therefore we restrict our

attention to decrease in outputs and increase in inputs for

DMUo. In order to simultaneously consider the data changes

for the other DMUs, we suppose increased output and

decreased input for all other DMUs. That is, our discussion

is based on a worst-case scenario in which ef®ciency of

DMUo declines and the ef®ciencies of all other DMUj

( j 6� o) improve.

Let I and O denote respectively the input and output

subsets in which we are interested. Then the simultaneous

changes of input/output of all DMUj ( j 6� o) and DMUo can

be classi®ed into two cases:

Percentage change case

For DMUo

x̂io � dxio d5 1; i 2 I

x̂io � xio i =2 I

�
or, equivalently,

x̂io � xio � �dÿ 1�xio d5 1; i 2 I

x̂io � xio i =2 I

�
ŷro � tyro 0 < t4 1; r 2 O

ŷro � yro r =2 O

�
or, equivalently,

ŷro � yro ÿ �1ÿ t�yro 0 < t4 1; r 2 O

ŷro � yro r =2 O

�
For DMUj (j 6� o)

x̂ij � xij=d d5 1; i 2 I

x̂ij � xij i =2 I

�
or, equivalently,

x̂ij � xij ÿ
dÿ 1

d
xij d5 1; i 2 I

x̂ij � xij i =2 I

8<:
ŷrj � yrj=t 0t4 1; r 2 O

ŷrj � yrj r =2 O

�

or, equivalently,

ŷrj � yrj �
1ÿ t
t

yrj 0 < t4 1; r 2 O

ŷrj � yrj r =2 O

8<:
Absolute change case

For DMUo

x̂io � xio � r r5 0; i 2 I

x̂io � xio i =2 I

�
and

ŷro � yro ÿ j j5 0; r 2 O

ŷro � yro r =2 O

�
For DMUj ( j 6� o)

x̂ij � xij ÿ r r5 0; i 2 I

x̂ij � xij i =2 I

�
and

ŷrj � yrj � j j5 0; r 2 O

ŷrj � yrj r =2 O

�
where ( Ã ) represents adjusted data.

On the basis of these two cases, we will study the

sensitivity of the CCR, BCC and additive models. We

®rst assume that the modi®ed DEA models employed are

feasible.

CCR ratio model

In this case we assume that DMUo is CCR ef®cient, namely

the CCR radial ef®ciency score is equal to one. We will

calculate the upper-bound of d and the lower-bound of t,

namely the ranges for d and t such that all the input and

output perturbations within these ranges preserve the ef®-

ciency of DMUo.

Consider the following (input-based) modi®cation of the

CCR DEA model

b� � min b

subject to Pn
j�1
j 6�o

ljxij 4bxio i 2 I

Pn
j�1
j 6�o

ljxij 4 xio i =2 I �4�

Pn
j�1
j 6�o

ljyrj 5 yro r � 1; 2; . . . ; s

b; lj� j 6� o�5 0:

1062 Journal of the Operational Research Society Vol. 49, No. 10



Theorem 1 For the percentage change case, if

14d4
�����
b�

p
, then DMUo remains ef®cient, where b* is

the optimal value to (4).

Proof Since DMUo is ef®cient (and since we assume (4) is

feasible), then by Zhu5 we know that b* 5 1, and therefore�����
b�

p
5 1. Now suppose 14do 4

�����
b�

p
and DMUo is inef®-

cient when x̂io � doxio and x̂ij � xij=do; i 2 I . Then there

exists lj ( j 6� o)5 0 and y< 1 such thatPn
j�1
j 6�0

lj

xij

do

4ydoxio i 2 I

Pn
j�1
j 6�o

ljxij 4 xio i =2 I

Pn
j�1
j 6�o

ljyrj 5 yro r � 1; 2; . . . ; s:

This means that lj ( j 6� o) 5 0 and ydo
2 is a feasible

solution to (4). But ydo
2< b* violating the optimality of

b*.

For the special case I� {k}, k 2 {1, 2, . . . , m} then (4)

becomes (2). By Theorem 1, we have:

Corollary 1 For the case of a change in only one input

(for example, the kth input), if 14d4
�����
b�k

p
, then DMUo

remains ef®cient, where bk
* is the optimal value to (2).

If I� {1, 2, . . . , m} then (4) is the input-based modi®ed

CCR model. The square root of the optimal value now gives

the maximum proportional increase of all inputs for DMUo

and the maximum proportional decrease of all inputs for all

other DMUj ( j 6� o) while preserving the ef®ciency of

DMUo.

For change in outputs, we consider the following

(output-based) modi®cation of the CCR DEA model

a� � max a

subject to Pn
j�1
j 6�o

ljyrj 5ayro r 2 O

Pn
j�1
j 6�o

ljyrj 5 yro r =2 O �5�

Pn
j�1
j 6�o

ljxij 4 xio i � 1; . . . ;m

a; lj� j 6� o�5 0:

Similar to Theorem 1, we have

Theorem 2 For the percentage change case, if�����
a�
p

4t4 1, then DMUo remains ef®cient, where a* is

the optimal value to (5).

For the special case O� {l}, where l2 {1, 2, . . . , r}, we

have:

Corollary 2 For the case of a change in only one output

(for example, the lth input), if
�����
a�l

p
4t4 1, then DMUo

remains ef®cient, where a�l is the optimal value to (3).

When O� {1, 2, . . . , s}, then (5) is the output-based

modi®ed CCR model. The square root of the optimal value

gives the lower bound for t when all outputs of all DMUs

change proportionally.

Theorem 3 b*� 1/a� when I� {1, 2, . . . , m} and O� {1,

2, . . . , s}.

Proof We can immediately obtain b� � 1/a� by the relation-

ship between the input-based and the output-based CCR

models.

The above theorem indicates that in the case of simulta-

neous proportionate change of all inputs or all outputs, we

can know the possible input (proportional) perturbations

from the possible output (proportional) perturbations, and

vice versa. Either
�����
b�

p
or

�����
a�
p

will provide the information

on the bounds of d and t, that is, we have

14d4
�����
b�

p
� 1�����

a�
p

� �
and � �����

a�
p �� 1�����

b�
p 4t4 1:

It can be seen that b�k (b�) and a�l (a�� are respectively the

upper bound for input perturbations and the lower bound

for output perturbations of DMUo when the remaining

DMUj ( j 6� o) are ®xed. Therefore the maximum propor-

tional perturbations of inputs and outputs under the simul-

taneous changes of all DMUs are the square roots of the

corresponding maximum proportional perturbations under

the situations when only the test ef®cient DMUs data is

perturbed (Zhu5).

Next we consider the following modi®ed DEA model for

simultaneous variations of inputs and outputs

G� � minG

subject to Pn
j�1
j 6�o

ljxij 4 �1� G�xio i 2 I

Pn
j�1
j 6�o

ljxij 4 xio i =2 I

Pn
j�1
j 6�o

ljyrj 5 �1ÿ G�yro r 2 O

Pn
j�1
j 6�o

ljyrj 5 yro r =2 O

lj� j 6� o�5 0;G unrestricted:

�6�

LM Seiford and J ZhuÐSensitivity analysis of DEA models 1063



If I� {1, 2, . . . , m} and O� {1, 2, . . . , s}, then (6) is

identical to the model of Chames et al. 4

Theorem 4 For the percentage case with simultaneous

changes of inputs and outputs, if 14d � ��������������
1� G�
p

and��������������
1ÿ G�
p

4t4 1, then DMUo remains ef®cient, where G*

is the optimal value to (6).

Proof The proof is similar to that of Theorem 1 and is

omitted.

Note that we are unable to discuss absolute changes

directly through the modi®ed CCR and DEA models.

However after obtaining the percentage changes, we can

transform them into the absolute changes DMU by DMU.

Convex DEA model

In this situation, for the percentage change case, Theorems

1, 2, 3 and Corollaries 1, 2 hold for BCC ef®cient DMUs

where we add the additional constraint of
Pn

j�1; j 6�o lj � 1

respectively into (2) ± (6).

Next consider absolute change; in this case the sensitiv-

ity analysis results are also suitable to the additive model.

Consider the following linear programming problem which

generalises model (1).

u� � min u

subject to Pn
j�1
j 6�o

ljxij 4 xio � u i 2 I

Pn
j�1
j 6�o

ljxij 4 xio i =2 I

Pn
j�1
j 6�o

ljyrj 5 yro ÿ u r 2 O

Pn
j�1
j 6�o

ljyrj 5 yro r =2 O

Pn
j�1
j 6�o

lj � 1

u; lj� j 6� o�5 0:

�7�

Theorem 5 For the absolute change case, if 0 4 r,

j 4 u�=2, then DMUo remains ef®cient, where u� is the

optimal value to (7).

Proof The proof is similar to that of Theorem 1.

If O�é then (7) only considers absolute changes in

input. If I�é then (7) only considers absolute changes in

output. Let u�I and u�O respectively denote the optimal values

to (7) under O�é and I�é, then we have

Theorem 6

(i) For the absolute change of input case, if 04r4 u�I =2;
then DMUo remains ef®cient;

(ii) For the absolute change of output case, if 04
j4 u�o=2; then DMUo remains ef®cient.

For different choices of subsets I and O, we can deter-

mine the sensitivity of DMUo to the absolute changes of

different sets of inputs or (and) outputs where DMUos

ef®ciency is deteriorating and DMUjs ( j 6� o) ef®ciencies

are improving.

If for each i2 I and each r2O, we use separate ui and ur,

and change the objective function of (7) to minimiseP
i2I ui �

P
r2O ur, then we obtain the generalised model

under the 1±norm

min
P
i2I

ui �
P
r2O

ur

subject to Pn
j�1
j 6�o

ljxij 4 xio � ui i 2 I

Pn
j�1
j 6�o

ljxij 4 xio i =2 I

Pn
j�1
j 6�o

ljyrj 5 yro ÿ ur r 2 O

Pn
j�1
j 6�o

ljyrj 5 yro r =2 O

Pn
j�1
j 6�o

lj � 1

ui; ur; lj� j 6� o�5 0:

�8�

The optimal values of u�i =2 (i2O) and u�r =2 (r2O) also

give the range of possible different input and output pertur-

bations of DMUo and DMUj ( j 6� o). If we let G xio�
ui (i2 I) and G yro� ur (r 2 O), then (8) is equivalent to (6)

except for the constraint
Pn

j�1; j 6�o lj � 1, that is the abso-

lute change can be transformed into the percentage change

case, and vice versa.

Infeasibility and stability

In the previous developments, we assumed that the modi-

®ed DEA models employed, say (4), (5) and (7), in

Table 1 Data for the example

DMU 1 2 3

Output 1 1 0.25 0.25
Input 1 1 0.25 1
Input 2 1 1 0.5
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sensitivity analysis were always feasible. However, this

assumption is not necessarily true, particularly in the

convex DEA case.

Consider the example from Charnes et al 3 given in Table

1, with three DMUs, a single output, and two inputs.

DMU1 is an ef®cient DMU. Applying different modi®ed

DEA models for DMU1 yields the results shown in Table 2.

Seven infeasibility cases are detected. Of which six are for

the convex DEA situation. To interpret Table 2, we say that,

for example, the `4' in the third row under the ratio model

indicates that in the event of change to the second input

only, the input of DMU1 can be increased from 1 to 2 units

while that of DMU2 and DMU3 can be decreased by 2 units

while maintaining the ef®ciency of DMU1 under the CCR

ratio model. (Note that
���
4
p � 2 and therefore 1 4 d 4 2

when I� {2}.)

Similarly, the `3/4' in the last row of the third column

means that the two inputs and the single output of DMU1

can respectively be increased and decreased by
���
3
p

/2 and

meanwhile the corresponding inputs and output of DMU2

and DMU3 can respectively be decreased and increased by���
3
p

/2 while keeping the ef®ciency of DMU1 under the BCC

model or additive model. Also one can obtain the absolute

change case by dividing the related numbers of 3/4 by 2, that

is, 3/8.

At ®rst glance, it appears that we are unable to derive the

sensitivity information from the infeasibilities in Table 2.

Recall that Seiford and Zhu7 showed that in the case of

change to the test ef®cient DMUs data only, the infeasi-

bility means that the test ef®cient DMU can in®nitely

increase (decrease) its corresponding inputs (outputs) and

still preserve its ef®ciency under the CCR ratio model. As a

matter of fact, this result can be generalised to the situation

where all DMUs change their data for the ratio as well as

the convex DEA models.

We ®rst consider absolute change, namely, formulation

(7).

Theorem 7 (Absolute change case) For any nonnegative

r and j, DMUo remains ef®cient after the simultaneous

absolute data changes of DMUo and the remaining DMUj

(j 6� o) if and only if (7) is infeasible.

Proof The proof follows from the results of Seiford and

Zhu7 and Theorem 1.

Therefore, the infeasibility cases under the absolute

changes in Table 2 means that the ef®ciency of DMU1 is

robust with respect to input changes of DMUs 1, 2 and 3.

The above result is also true for the percentage change case

since absolute changes can be transformed into percentage

changes. In fact, similar to Theorem 7, we have:

Theorem 8 Percentage change case For any d 5 1 and

0< t 4 1, DMUo remains ef®cient after the simultaneous

percentage data changes for DMUo and the other DMUj

(j 5 o) if and only if (6) is infeasible.

Furthermore, we have:

Corollary 3

(i) In the input percentage change case, for any d 5 1,

DMUo remains ef®cient after the simultaneous data

changes for DMUo and the remaining DMUj ( j 6� o)

if and only if (4) is infeasible.

(ii) In the output percentage change case, for any

0< t 4 1, DMUo remains ef®cient after the simulta-

neous data changes of DMUo and the remaining DMUj

( j 6� o) if and only if (5) is infeasible.

One can conclude that infeasibility of the modi®ed DEA

models can be interpreted as stability of the ef®ciency

classi®cation of DMUo with respect to the changes of

corresponding inputs and (or) outputs in all DMUs.

In addition, note that since the modi®ed convex DEA

models have the constraint
Pn

j�1;j 6�o lj � 1, any solution to

a speci®c modi®ed convex DEA model is also a feasible

solution to the associated modi®ed ratio DEA model.

Therefore if the modi®ed ratio DEA model (say, modi®ed

CCR model) is infeasible, then the corresponding modi®ed

convex DEA model (say, modi®ed BCC model) must be

infeasible. Therefore we have:

Theorem 9 If infeasibility occurs in the modi®ed ratio -

DEA model, then it must also occur in the corresponding

modi®ed convex DEA model.

Table 2 Robustness of the ef®ciency of DMU1

Ratio Convex Absolute change Convex
Percentage change model model (u*) model

b�1 Infeasibility Infeasibility I� {1}, O�é Infeasibility
b�2 4 Infeasibility I� {2}, O�é Infeasibility
b�; I� {1, 2} 14/5 Infeasibility I� {1, 2}, O�é Infeasibility
a� � a�1 5/14 1/4 I�é, O� {1} 3/4
G�, I� {1}, O� {1} 9/16 3/4 I� {1}, O� {1} 3/4
G�, I� {2}, O� {1} 9/17 3/4 I� {2}, O� {1} 3/4
G�, I� {1, 2}, O� {1} 9/19 3/4 I� {1, 2}, O� {1} 3/4
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Therefore the DEA ef®ciency of ef®cient DMUs for the

BCC model is more stable than that in the CCR model.

Finally we should note that if I� {1, 2, . . . m} and

O� {1, 2, . . . s}, then (6) and (7) are always feasible. Note

also that when the DEA data domain contains some zero

data, it is better to use the modi®ed DEA models under the

absolute change case, say (7) or (8).

Illustrative applications

The newly developed sensitivity analysis method is applied

to two real world data sets: Chinese cities (Charnes et al 12)

and Chinese textiles (Zhu13). The sensitivity analysis is

carried out as follows: (i) We consider the percentage

changes of each individual input, each individual output,

all inputs and all outputs respectively; (ii) We determine the

upper-bound levels of go (� d7 1) and g (� (d7 1)=d) for

input changes and ho (� 17 t) and h(� (17 t�=t) for

output changes as described in the percentage change case.

Upper bounds of, for example, go and g can respectively be

obtained as
�����
b�

p
ÿ 1 and �

�����
b�

p
ÿ 1�=

�����
b�

p
for i 2 I. Here we

interpret (go, g) and (ho, h) as a sensitivity index in which go

and ho describe the change of each test ef®cient DMU and g

and h describe the change of remaining DMUs; (iii) Using

the sensitivity index, we study the sensitivity of both the

CCR ratio model and the BCC convex model.

Chinese cities data set

The raw data for 28 Chinese cities in the year 1984 are

given in Table 3. The data consists of three inputs of labor,

working funds (WF), and investment, and three outputs of

gross industrial output value (GIOV), pro®t & taxes (P&T),

and retail sales (RS). From the last two columns of Table 3,

we know that this data set has the same CCR and BCC

ef®cient DMUs except for the DMU27. As a result, the

CCR inef®ciency scores are almost equal to the BCC

inef®ciency scores.

Tables 4 and 5 respectively report the sensitivity analysis

results for the CCR and BCC models where the symbol

`� ' indicates that the modi®ed DEA models employed are

infeasible. The sensitivity index in each cell gives the

upper-bound levels of (go, g) and (ho, h). For instance,

consider the DMU1 in Table 4. In the labor row, (4.14%,

3.97%) means that labor input of DMU1 can be increased

by 4.14% and meanwhile the labor input of all other DMUs

can be decreased by 3.97%. In the P&T row, (24.92%,

33.19%) means that the simultaneous 24.92% decrement of

Table 3 Data for the Chinese cities and DEA ef®ciency scores

Outputs Inputs Ef®ciency scoresa

DMU No. GIOV P & T RS Labor WF INV. CCR BCC

1 7443700 1692100 1323800 487.44 1594040 718953 1 1
2 2817200 589600 1016600 375.42 955124 522032 0.64449 0.80210
3 2514900 443600 566200 273.69 782585 371314 0.62255 0.65157
4 1337100 162700 410300 208.82 489676 138017 0.50059 0.53053
5 1377600 232900 382900 199.99 519686 142688 0.51265 0.52715
6 1333600 209700 614500 181.90 480392 259092 0.68822 0.70422
7 758947 102893 298563 150.93 410727 95775 0.42528 0.43452
8 1157572 166978 412991 188.23 470104 134031 1 1
9 973951 166056 294927 126.48 296534 130325 0.61436 0.61915

10 668107 83735 248680 122.70 335329 105474 0.44484 0.46797
11 834600 128455 856868 133.13 335605 103431 1 1
12 540428 86288 298182 109.31 277571 65906 0.55594 0.59475
13 541923 87296 145379 94.45 204998 130349 0.44374 0.48127
14 918508 169458 290519 113.16 309779 115381 0.63190 0.63200
15 849956 128665 274982 87.54 209197 64903 0.78541 0.78623
16 540857 130638 141709 73.70 250558 86045 0.52156 0.59803
17 546065 82058 192074 77.64 181067 52858 1 1
18 547122 140122 120739 74.19 158850 52715 0.59853 0.64068
19 686383 201297 152881 89.69 203720 76580 0.60856 0.60867
20 450743 89031 171123 75.52 184676 78686 0.52922 0.60335
21 922572 61174 255685 70.73 136273 13424 1 1
22 1008736 137108 298717 68.10 235282 12365 1 1
23 664434 62610 217554 58.58 95712 7454 1 1
24 1093882 97857 214078 69.27 174731 13906 1 1
25 709278 69343 150142 47.97 111573 10502 1 1
26 649295 38004 256040 67.77 105075 10317 1 1
27 162454 12841 29041 20.07 55384 1847 0.98673 1
28 359956 38869 201795 72.37 133826 4322 1 1

aThe ef®ciency scores are obtained from the input-based DEA model.
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P&T in DMU1 and 33.19% increments of PT in the

remaining 27 DMUs can not change the current ef®ciency

classi®cation of DMU1.

In both the CCR and the BCC cases, DMU25 is the

most sensitive unit to possible data errors, since DMU25

has the lowest values for the sensitivity index in all cases

of input and output variations. DMUs 11, 17, 22, 23, 27

and 28 are relatively insensitive to the possible data

errors, since these DMUs have larger values of sensitivity

index.

Table 4 Sensitivity analysis results of the Chinese cities for the CCR ratio model

Ef®cient DMUs 1 8 11 17 21 22

Labor 4.14%, 3.97% � � � 3.65%, 3.52% �
W.F. � � � � 4.57%, 4.37% �
Investment � 6.40%, 6.02% � � � �
All inputs 4.14%, 3.97% 6.40%, 6.02% 25.48%, 20.30% 126.06%, 55.76% 1.17%, 1.16% 11.07%, 9.96%
GIOV 4.86%, 5.11% � � � 2.09%, 2.13% �
P & T 24.92%, 33.19% 14.33%, 16.72% � 55.76%, 126.06% � �
Retail sales � � 20.30%, 25.48% � � �
All outputs 3.98%, 4.14% 6.02%, 6.40% 20.30%, 25.48% 55.76%, 126.06% 1.16%, 1.17% 9.96%, 11.07%

continued

Table 4 (continued)

Ef®cient DMUs 23 24 25 26 28

Labor � 10.89%, 9.82% 1.00%, 1.00% � �
WF � � 0.30%, 0.30% 3.14%, 3.05% �
Investment � � � � 25.41%, 20.26%
All inputs 12.42%, 11.05% 4.57%, 4.37% 0.22%, 0.22% 2.98%, 2.89% 23.70%, 19.16%
GIOV � 4.34%, 4.57% 0.20%, 0.20% � �
PRT � � 3.00%, 3.00% � �
Retail sales � � � 2.97%, 3.06% 19.16%, 23.70%
All outputs 11.05%, 12.42% 4.37%, 4.57%% 0.22%, 0.22% 2.89%, 2.98% 19.16%, 23.70%

Table 5 Sensitivity analysis results of the Chinese cities for the BCC convex model

Ef®cient DMUs 1 8 11 17 21 22

Labor � � � � � �
W.F. � � � � 9.37%, 8.57% �
Investment � 84.73%, 45.87% � � � �
All inputs � 84.73%, 45.87% 85.85%, 46.19% 144.42%, 59.09% 6.74%, 6.31% 22.08%, 18.09%
GIOV � � � � 4.76%, 5.00% �
P & T � � � 55.91%, 126.80% � �
Retail sales � � 29.49%, 41.83% � � �
All outputs 40.19%, 67.20% 14.05%, 16.35% 29.49%, 41.83% 55.85%, 126.51% 2.90%, 2.99% 11.56%, 13.07%

continued

Table 5 Continued.

Ef®cient DMUs 23 24 25 26 27 28

Labor � � 8.34%, 7.70% � � �
W.F. � � � 20.15%, 16.77% � �
Investment � � � � � 27.13%, 21.34%
All inputs 13.72%, 12.07% 22.76%, 18.54% 4.00%, 3.85% 8.59%, 7.91% 80.02%, 44.45% 27.13%, 21.34%
GIOV � 13.13%, 15.11% 7.00%, 7.52% � � �
P & T � � � � � �
Retail sales � � � 4.11%, 4.29% � 25.54%, 34.29%
All outputs 13.98%, 16.25% 6.58%, 7.04% 5.23%, 5.51% 3.67%, 3.81% � 25.42%, 34.08%

LM Seiford and J ZhuÐSensitivity analysis of DEA models 1067



Recall that the infeasibility means stability, that is, the

upper-bound levels of go, h and g, ho are respectively � 1
and (100 - e)%, where e is a small enough positive number.

Therefore the symbol `� ' means that (i) the input of the test

DMU can in®nitely be increased and simultaneously the

corresponding inputs of the remaining DMUs can be

reduced to any positive numbers; (ii) the output of the test

DMU can be reduced to any positive numbers while the

corresponding outputs of the remaining DMUs can in®nitely

be increased. There are more infeasibility cases under the

BCC model than these under the CCR model.

Chinese textiles data set

This data set consists of 30 DMUs in the year 1989 with

three inputs (circulating fund, investment, and labor) and

three outputs (revenue from selling the products, pro®t &

taxes, and net industrial output value). Table 6 contains the

raw data for which 9 DMUs are CCR ef®cient and 13

DMUs are BCC ef®cient. The discussion to follow is

similar to the above one for the Chinese cities. However,

the structure of this textiles data set is very different from

the previous one in the sense that larger discrepancies are

found between the CCR and the BCC scores in this data set.

Tables 7 and 8 respectively show the 72 and 104

sensitivity analysis results for all 9 CCR ef®cient DMUs

and all 13 BCC ef®cient DMUs when data variations are

made for 8 different subsets of inputs and outputs. Of the

72 CCR sensitivity analysis results, 37 result in infeasibility

and of the 104 BCC sensitivity analysis results, 68 are

infeasible. Therefore, under both DEA models, over 50% of

the sensitivity analysis results demonstrate that the DEA

models are stable to particular data variations. Note that

under the CCR case, 32% of the sensitivity indices are less

than (20%, 20%); while under the BCC case, 19% of the

sensitivity indices are less than (20%, 20%). Therefore the

DEA ef®ciency is more robust in the convex DEA model.

Conclusions

The current paper develops a new approach for the sensi-

tivity analysis of DEA models including the CCR, BCC and

additive models. By the additional constraint onPn
j�1;j 6�o lj, the approach can easily be modi®ed to study

Table 6 Data for the Chinese textiles and DEA ef®ciency scores

Outputs Inputs Ef®ciency scoresa

DMU No. Revenue P & T NIOV Fund INV Labor CCR BCC

1 193588 17870 5682 46509 66635 4063 1 1
2 19574 1287 330 6385 4054 481 0.95014 1
3 127168 11070 2235 26066 21548 4762 0.93383 1
4 49050 2805 886 10832 14419 1365 0.90252 0.91041
5 19520 663 667 6487 2590 1267 0.67273 0.94744
6 18388 400 684 6271 5735 1342 0.54438 0.60063
7 26040 1335 780 5542 10552 1185 0.78048 0.86823
8 5318 414 190 2389 1003 534 0.48470 0.60973
9 54783 270 834 10346 17037 1083 1 1

10 42313 1106 503 8731 10721 837 1 1
11 11539 1425 488 3560 4879 843 0.66911 0.73149
12 19922 392 541 9415 7292 1594 0.42530 0.42621
13 35568 4798 1612 10529 6213 880 1 1
14 12856 810 571 2789 2558 475 1 1
15 10211 691 425 3096 3671 558 0.68387 0.72863
16 9055 703 313 2233 339 454 1 1
17 12454 994 346 2319 1965 476 0.96261 0.99144
18 6841 32 145 2026 873 395 0.74003 0.78739
19 6748 469 264 1502 1616 453 0.78594 0.83353
20 5042 157 87 765 524 252 0.98903 1
21 2534 120 20 1102 311 213 0.54650 1
22 10874 303 366 2713 2362 538 0.73934 0.77487
23 16341 506 339 1447 236 706 1 1
24 6930 736 176 2292 1618 390 0.65934 0.81873
25 9430 1790 307 4383 337 593 0.76405 0.80145
26 4087 717 240 2072 1568 448 0.57913 0.73479
27 6178 1018 300 1332 1134 381 1 1
28 2331 1514 521 5548 3584 983 0.87582 0.90380
29 12374 649 550 4744 5168 1426 0.51327 0.56229
30 12115 899 227 1750 1812 498 1 1

aThe ef®ciency scores are obtained from the input-based DEA model.
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the sensitivity of other DEA models that satisfy different

returns to scale (Seiford and Thrall14). Compared to the

existing DEA sensitivity analysis methods, our approach (i)

simultaneously considers the changes of all DMUs, namely,

the change of the test DMU and the changes of the

remaining DMUs; (ii) all remaining DMUs work at

improving their ef®ciencies against the deteriorating ef®-

ciency of the test ef®cient DMU; (iii) relies solely on DEA-

type technique so that the extraneous assumptions used by

sensitivity analysis in linear programming are not needed;

Table 7 Sensitivity analysis results of the Chinese textiles for the CCR ratio model

Ef®cient DMUs 1 9 10 13 14

Fund � � � � 8.80%, 8.09%
Investment � � � � �
Labor 12.77%, 10.04% 10.32%, 8.48% 10.05%, 9.13 48.56%, 32.69% 18.08%, 15.31%
All inputs 4.23%, 4.05% 4.07%, 3.91% 3.53%, 3.42% 34.33%, 25.55% 6.08%, 5.73%
Revenue 5.49%, 5.81% 4.40%, 4.60% 3.42%, 3.53% � �
P & T � � � � �
NIOV � � � � 7.30%, 7.87%
All outputs 4.05%, 4.23% 3.91%, 4.07% 3.42%, 3.53% 25.55%, 34.33% 5.73%, 6.08%

continued

Table 7 Continued

Ef®cient DMUs 16 23 27 30

Fund � 31.00%, 23.67% 35.80%, 26.36% 6.39%, 6.00%
Investment 96.14%, 49.02% � � �
Labor � � � 6.77%, 6.34%
All inputs 94.98%, 48.71% 29.82%, 22.97% 25.67%, 20.42% 2.22%, 2.17%
Revenue � � � 3.2%, 3.31%
P & T � � � 7.92%, 8.61%
NIOV � � � �
All outputs 48.71%, 94.98% 22.97%, 29.82% 20.42%, 25.67% 2.17%, 2.22%

Table 8 Sensitivity analysis results of the Chinese textiles for the BCC convex model

Ef®cient DMUs 1 2 3 9 10 13 14

Fund � � � � � � 10.52%, 9.52%
Investment � � � � � � �
Labor � 2.90%, 2.82% � 32.98%, 24.80% 10.98%, 9.89% � �
All inputs � 2.87%, 2.79% 38.34%, 27.71% 6.02%, 5.68% 3.81%, 3.67% 53.83%, 35.00% 7.12%, 6.65%
Revenue � 4.98%, 5.52% � 4.96%, 5.22% 3.90%, 4.06% � �
P & T � � � � � � �
NIOV � � � � � � 10.64%, 11.90%
All outputs 38.88%, 63.60% 4.23%, 4.42% 22.86%, 29.63% 4.97%, 5.23% 3.90%, 4.06% 29.52%, 41.89% 5.89%, 6.27%

continued

Table 8 Continued

Ef®cient DMUs 16 20 21 23 27 30

Fund � � � 41.59%, 29.37% � 8.49%, 7.83%
Investment; 96.23%, 49.04% � � � � �
Labor � � � � � �
All inputs 95.27%, 48.79% 23.73%, 19.18% 22.13%, 18.12% 37.60%, 27.33% 27.30%, 21.45% 2.87%, 2.79%
Revenue � � � � � 4.42%, 4.62%
P & T � � � � � 13.19%, 15.19%
NIOV � � � � � �
All outputs 69.29%, 225.60% � � 23.35%, 30.46% 26.66%, 36.34% 3.25%, 3.36%
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and (iv) yields more exact sensitivity analysis results (see

Appendix).

The paper has focused on suf®cient conditions for a test

DMU to preserve its ef®ciency when the data of other

DMUs are also changed. As a matter of fact, we could

employ the technique in Seiford and Zhu7 to determine

necessary conditions when there exists evidence that we

need to explore a larger ef®ciency stability region for the

test DMU. In addition, although the paper identi®es a

maximum (same) percentage (lower or upper bound)

change in the data, the data change rates for a test DMU

and others are not necessarily the same within the variation

ranges determined by the maximum percentage.

The application here is an illustrative one. The results

have shown that the DEA ef®ciency models, particularly

the convex DEA model (BCC model), overall, are robust. It

can be seen that some DMUs are extremely insensitive to

the potential data errors with sensitivity index values

greater than (50%, 50%) while some DMUs are extremely

sensitive to the potential data errors with sensitivity index

values less than (5%, 5%). The performance of these

ef®cient DMUs is worth further study. In our opinion, the

newly developed sensitivity analysis approach could also

be used for further analysis of managerial performance,

particularly for those DMUs having extremely large or

small values of the sensitivity index. This may in turn

require interaction with management of these DMUs. Use

of this newly developed sensitivity analysis approach as a

performance management tool is a subject for future

research.

Appendix

This Appendix will compare our sensitivity analysis

approach to that of Thompson et al 8 for the example

used in their paper in which DMUs 1, 2 and 3 are CCR

ef®cient (see Table 9).

Table 10 reports the sensitivity analysis results under the

situation when all the two inputs change in percentage.

Row 2 represents the results obtained by using our

approach. For example, the two inputs of DMU2 can be

increased by 11.80% and simultaneously the two inputs of

DMUs 1, 3, 4, 5, and 6 can be decreased by 10.56% while

DMU2 is still CCR ef®cient. Rows 3 and 4 show the results

by using two different sets of SCSC solutions given in

Table 11. The `20%' in the second and the last columns

means that the two inputs of DMUs 1, 2 and 3 can be

increased by 20% and the two inputs of DMUs 4, 5 and 6

can be decreased by 20% while DMU1 and DMU2 are still

CCR ef®cient. Here the percentage numbers mean that the

variation under which the test ef®cient DMU remains CCR

ef®cient, rather than the switch point under which the test

ef®cient DMU is replaced (see Thompson et al 8 for a

detailed illustration for the switch).

Note that under different SCSC solutions, we have

different upper-bound levels of input variations. Consider,

for example, DMU2, under SCSC-1, we have 14% which is

greater than 11.80% and 10.56%, while under SCSC-2, we

have 9.1% which is less than 11.80% and 10.56%. Thus our

approach gives more robust and accurate results. Note that

our condition in data variations is even more restrictive

than that in Thompson et al 8 Since our sensitivity analysis

approach considers the situation of all other DMUs improv-

ing their ef®ciency against the test ef®cient DMU, while

Thompson et al 8 considered the situation of all inef®cient

DMUs improving their ef®ciency against all ef®cient

DMUs.
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