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The super-efficiency data envelopment analysis (DEA) model is obtained when a decision making unit (DMU)
under evaluation is excluded from the reference set. This model provides for a measure of stability of the
“efficient” status for frontier DMUs. Under the assumption of variable returns to scale (VRS), the super
efficiency model can be infeasible for some efficient DMUs, specifically those at the extremities of the frontier.
The current study develops an approach to overcome infeasibility issues. It is shown that when the model
is feasible, our approach yields super-efficiency scores that are equivalent to those arising from the ori-
ginal model. For efficient DMUs that are infeasible under the super-efficiency model, our approach yields
optimal solutions and scores that characterize the extent of super-efficiency in both inputs and outputs. The
newly developed approach is illustrated with two real world data sets.
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1. Introduction

The data envelopment analysis (DEA) model of Charnes
et al (1978) provides a methodology for evaluating a relative
efficiency score for each member of a set of peer decision-
making units (DMUs); this constant returns (CRS) model was
extended by Banker et al (1984) to included variable returns
to scale (VRS). An important problem in the DEA literature
is that of ranking those DMUs deemed efficient by the DEA
model, all of which have a score of unity. One approach to
the ranking problem is that provided by the super efficiency
model of Andersen and Petersen (1993). See also Banker
et al (1989). The super efficiency model involves executing
the standard DEA models (CRS or VRS) , but under the
assumption that the DMU being evaluated is excluded from
the reference set. Specifically, the super efficiency score in
say the input-oriented model, provides a measure of the
proportional increase in the inputs for a DMU that could take
place without destroying the ‘efficient’ status of that DMU
relative to the frontier created by the remaining DMUs. The
super efficiency score can also be thought of as a measure of
stability. That is, if input data for instance, is subject to error
or change over time, the super efficiency score provides a
means of evaluating the extent to which such changes could
occur without violating that DMU’s status as an efficient
unit. Hence, the score yields a measure of stability.
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In addition to being a tool for ranking, the super-efficiency
concept has been used in other situations, for example, two-
person ratio efficiency games (Rousseau and Semple, 1995),
and acceptance decision rules (Seiford and Zhu, 1998a),
among others.

It is well known that under certain conditions, the super-
efficiency DEA model may not have feasible solutions for
efficient DMUs (see, eg, Zhu, 1996; Dulá and Hickman, 1997;
Seiford and Zhu, 1998a,b, 1999). Given the wide use of the
super-efficiency concept, it is thus worthwhile to develop
approaches that can overcome this infeasibility problem. This
is the scope of the current paper. As shown in Seiford and Zhu
(1999), infeasibility must occur in the case of the VRS super-
efficiency model. Although infeasibility implies a form of
stability in DEA sensitivity analysis (Seiford and Zhu, 1998b),
limited efforts have been made to provide numerical super-
efficiency scores for those efficient DMUs for which feasible
solutions are unavailable in the VRS super-efficiency model.
Lovell and Rouse (2003) developed a standard DEA approach
to the super-efficiency model by scaling up the inputs (scaling
down the outputs) of a DMU under evaluation. As a result,
a feasible solution can be found for efficient DMUs that do
not have such (feasible) solutions in the standard VRS super-
efficiency model. The super-efficiency scores for all efficient
DMUs without feasible solutions are then equal to the user-
defined scaling factor. Chen (2004, 2005) suggests using both
the input- and output-oriented VRS super-efficiency models
to quantify the super-efficiency when infeasibility occurs.
However, Chen’s approach will fail if both the input- and
output-oriented VRS super-efficiency models are infeasible.
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The current paper proposes an alternative approach to
solve the infeasibility problem in the VRS super-efficiency
model. Our approach provides VRS super-efficiency scores
that are equivalent to those arising from the VRS super-
efficiency model when feasibility is present. When the VRS
super-efficiency model is infeasible, our approach determines
a (virtual) referent DMU formed by the remaining DMUs
and yields a score that characterizes the super-efficiency in
inputs and outputs. Since the super-efficiency and standard
DEA models always have feasible solutions and yield equiv-
alent results for inefficient DMUs, the current study assumes
that a DMU under evaluation is efficient (ie on the DEA
frontier).

The rest of the paper is organized as follows. Section 2
presents the existing VRS super-efficiency models. Section
3 develops our new approach. The relationship between our
approach and that of Lovell and Rouse (2003) is discussed in
Section 4. Section 5 applies the newly developed approach to
data on the 20 largest Japanese companies and 15 US cities
that are used in Chen (2004). Conclusions are presented in
Section 6.

2. Super-efficiency DEA

Suppose we have a set of n DMUs {DMUj : j =1, 2, . . . , n}.
Each DMUj has a set of s outputs, yr j (r = 1, 2, . . . , s), and
a set of m inputs, xi j (i = 1, 2, . . . ,m). Based upon the VRS
DEA model (Banker et al, 1984), the input-oriented VRS
super-efficiency model can be expressed as

min �

s.t.
n∑

j=1
j �=k

� j xi j ��xik, i = 1, 2, . . . ,m

n∑

j=1
j �=k

� j yr j � yrk, r = 1, 2, . . . , s

n∑

j=1
j �=k

� j = 1

��0

� j �0, j �= k (1)

where the DMUk under evaluation is excluded from the refer-
ence set.

Note that model (1) is an input-oriented super-efficiency
DEA model. When DMUk is efficient and model (1) is
feasible, �∗

> 1, indicating that DMUk’s inputs are increased
to reach the frontier formed by the rest of the DMUs.
That is, super-efficiency is expressed in terms of input
increases. We can use �∗ as the super-efficiency score for
DMUk .

The output-oriented VRS super-efficiency model can be
expressed as

max�

s.t.
n∑

j=1
j �=k

� j xi j �xik, i = 1, 2, . . . ,m

n∑

j=1
j �=k

� j yr j ��yrk, r = 1, 2, . . . , s

n∑

j=1
j �=k

� j = 1

��0

� j �0, ( j �= k) (2)

When DMUk is efficient and model (2) is feasible, �∗ �1,
indicating that DMUk’s outputs are decreased to reach the
frontier formed by the rest of the DMUs, that is super-
efficiency is represented by output reductions, and the degree
of output-oriented super-efficiency is given by 1/�∗ �1.

These models can be infeasible in certain situations. Seiford
and Zhu (1999) provide the necessary and sufficient condi-
tions for the infeasibility of these models. It is shown that in
the case that a VRS efficient DMU has the largest output(s)
(regardless of the input values), model (1) must be infeasible;
if it has the smallest input(s) (regardless of the output values),
model (2) must be infeasible. Note that any data set always
contains such efficient DMUs. Thus, models (1) and (2) must
be infeasible for these efficient DMUs.

Note that when model (1) (or model (2)) is infeasible,
no numerical value can be assigned to �∗ (or 1/�∗). The
next section will develop an approach to provide a numer-
ical value to the input-oriented (or output-oriented) super-
efficiency score.

3. New model

Infeasibility of model (1) (or (2)) occurs when a VRS effi-
cient DMU under evaluation cannot reach the frontier formed
by the rest of DMUs via increasing the inputs (or decreasing
the outputs). Unlike the standard super efficiency models (1)
and (2), each of which has a specific orientation (input or
output), our model proposes moving to the frontier by way
of projection in both directions. In practical terms, rather
than asking, for a given efficient DMU, either how much
increase in inputs is possible, or how much reduction in
outputs is possible, while still retaining its efficient status,
our model describes the minimum movement in both direc-
tions needed to reach the frontier generated by the remaining
DMUs. Viewed another way, in the case of infeasibility,
our model derives the minimum change needed to project
a data point, classified as an extremity, to a non extreme
position.
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Consider the following model for DMUk

Min � + M × �

s.t.
n∑

j=1
j �=k

� j xi j �(1 + �)xik, i = 1, 2, . . . ,m

n∑

j=1
j �=k

� j yr j �(1 − �)yrk, r = 1, 2, . . . , s

n∑

j=1
j �=k

� j = 1

��0, � j �0, j = 1, 2, . . . , n; j �= k (3)

where M is a user-defined large positive number. (In our
application, M is set equal to 105.)

Theorem 1 Model (1) is infeasible if and only if �∗
> 0,

where �∗ is the optimal solution in model (3).

Proof Note that �> 0. Suppose model (1) is infeasible. If
�∗ = 0, this means that model (1) is feasible, which is a
contradiction. Therefore, �∗

> 0. Now, suppose �∗
> 0, and

suppose model (1) is feasible. This means that �∗ = 0 is a
feasible solution to model (3), in contradiction to the fact that
�∗

> 0 is optimal. Therefore, model (1) is infeasible. This
completes the proof. �

Theorem 1 indicates that model (1) is feasible if and only
if �∗ = 0. This further indicates that 1 + �∗ = �∗, where (∗)
denotes the optimal values in models (1) and (3). In other
words, when model (1) is feasible, model (3) is equivalent to
model (1), in the sense that the objective function values of
the two models are identical.

Theorem 2 1>�∗ �0 and �∗ > − 1 in model (3).

Proof Note that in model (3), � j �0, j = 1, 2, . . . , n, and∑n
j=1
j �=k

� j =1. Therefore,
∑n

j=1
j �=k

� j yr j>0, r =1, 2, . . . , s. Thus,

there must exist � ∈ [0, 1) such that
∑n

j=1
j �=k

� j yr j �(1−�)yrk ,

r = 1, 2, . . . , s. Note also that model (3) minimizes �. There-
fore, 1>�∗ �0. Similarly, we can prove that �∗ > − 1. �

From Theorem 2 it follows that when model (1) is infea-
sible, 1/(1− �∗

) > 1 and 1+ �∗ > 0, that is, in order to have
a feasible solution, DMUk must decrease its outputs. Further,
we define the super-efficiency score as 1 + �∗ + 1/(1 − �∗

)

(> 1). This super-efficiency score consists of a component for
input super-efficiency, namely 1 + �∗ > 0, and a component
for output super-efficiency, namely 1/(1 − �∗

) > 1.
There are two cases associated with this new super-

efficiency score for DMUs not having feasible solutions in
model (1).

Case 1: �∗ > 0 (or 1 + �∗ > 1). In this case DMUk must
increase its inputs and decrease its outputs to reach the frontier
formed by the rest of the DMUs. This means that DMUk

exhibits super-efficiency in both inputs and outputs.
Case 2: �∗ < 0 (or 1 + �∗ < 1). This indicates that DMUk

must decrease its inputs and outputs to reach the frontier
formed by the rest of the DMUs, meaning that DMUk’s super-
efficiency is reflected by the outputs only.

In summary, our new model (3) yields a score equivalent
to the original VRS super-efficiency score if model (1) is
feasible. (When �=0, the actual value of the super-efficiency
score based upon model (3) is 1+ �∗ +1=�∗ +1, that is, the
input super-efficiency component of 1+�∗ is the original VRS
super-efficiency score �∗.) When model (1) is infeasible, our
model (3) determines an optimal solution and yields a numer-
ical super-efficiency score that captures the super-efficiency
in both inputs and outputs.

The above discussion is based upon an input-orientation
and model (1). For the output-orientation, we have the equiv-
alent model

Min � + M × �

s.t.
n∑

j=1
j �=k

� j xi j �(1 + �)xik, i = 1, 2, . . . ,m

n∑

j=1
j �=k

� j yr j �(1 − �)yrk, r = 1, 2, . . . , s

n∑

j=1
j �=k

� j = 1

��0, � j �0, j = 1, 2, . . . , n; j �= k (4)

where M is a user-defined large positive number.
Similar to Theorems 1 and 2, we have

Theorem 3 Model (2) is infeasible if and only if �∗
> 0.

Theorem 4 �∗ < 1 and �∗
> 0 in model (4).

Theorem 3 indicates that when model (2) is feasible, model
(4) is equivalent to model (2) in that 1 − �∗ = �∗.

When model (2) is infeasible, Theorem 4 indicates that
1/(1− �∗) > 0, meaning that in order to have a feasible solu-
tion, DMUk must increase its inputs. Further, we define the
super-efficiency score for DMUs not having feasible solutions
under model (2) as 1 + �∗ + 1/(1 − �∗)(> 1).

When 1> �∗ > 0, DMUk must decrease its outputs and
increase its inputs to reach the frontier formed by the rest of
the DMUs, indicating that DMUk exhibits super-efficiency in
both inputs and outputs. When �∗ < 0, DMUk must increase
both inputs and outputs to reach the frontier formed by the rest
of the DMUs, indicating that DMUk exhibits super-efficiency
in inputs only.
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4. Discussion

In this section, we examine the relation between our approach
and that of Lovell and Rouse (2003). While the discussion is
based upon input-oriented models, similar arguments apply
to output-oriented models.

The Lovell and Rouse (2003) model is defined as follows:

Min �

s.t.
n∑

j=1
j �=k

� j xi j+�k(	 × xik)��(	 × xik), i = 1, 2, . . . ,m

n∑

j=1
j �=k

� j yr j + �k yrk � yrk, r = 1, 2, . . . , s

n∑

j=1
j �=k

� j + �k = 1

� j �0, j = 1, 2, . . . , n (5)

where 	> 1 is a user-defined scaling factor. Lovell and Rouse
(2003) suggest using 	 = Maxi (Max xi j/Min xi j ) + 1. The
super-efficiency is then defined as � × 	.

Model (5) is equivalent to the following model

Min �

s.t.
n∑

j=1
j �=k

� j xi j �(� − �k)	xik, i = 1, 2, . . . ,m

n∑

j=1
j �=k

� j yr j �(1 − �k)yrk, r = 1, 2, . . . , s

n∑

j=1
j �=k

� j = 1 − �k

� j �0, j = 1, 2, . . . , n (6)

Now, let (� − �k)	 = 1 + �, where � is a variable that is
free in sign. Then, we have � = (1 + � + 	�k)/	 and the
super-efficiency score can be expressed as 	� = 1+ � + 	�k .
Because 	 is a user-defined constant, model (6) is equivalent
to the following model

Min � + 	�k

s.t.
n∑

j=1
j �=k

� j xi j �(1 + �)xik, i = 1, 2, . . . ,m

n∑

j=1
j �=k

� j yr j �(1 − �k)yrk, r = 1, 2, . . . , s

n∑

j=1
j �=k

� j = 1 − �k

� j �0, j = 1, 2, . . . , n (7)

Theorem 5 In model (7), there does not exist any optimal
solution such that 1> �∗

k > 0.

Proof Suppose there exists an optimal solution in model (7)
such that 1> �∗

k > 0. This indicates that the following model
has a feasible solution

Min �

s.t.
n∑

j=1
j �=k

� j

1 − �∗
k

xi j �
1 + �
1 − �∗

k

xik, i = 1, 2, . . . ,m

n∑

j=1
j �=k

� j

1 − �∗
k

yr j � yrk, r = 1, 2, . . . , s

n∑

j=1
j �=k

� j

1 − �∗
k

= 1

� j �0, j = 1, 2, . . . , n.

This further indicates that model (1) is always feasible, in
contradiction. This proves the theorem. �

Theorem 5 indicates that either �∗
k = 0 or �∗

k = 1. If �∗
k = 0,

this means that model (1) is feasible. As a result, model (6)
is equivalent to model (3), that is, both Lovell and Rouse
(2003) and our approaches yield the identical results to the
original super-efficiency model (1). If �∗

k =1, Theorem 5 also
indicates that model (1) is infeasible. In this case, model (7)
yields the optimal solutions of �∗

j =0, j �= k and �∗ =−1. As
a result, Lovell and Rouse’s (2003) super-efficiency is equal
to the user-defined 	 for all the efficient DMUs not having
feasible solutions in model (1).

We finally note that the value of 	 has nothing to do with
the constraints of model (7) when model (1) is infeasible for
DMUk . In fact, if we change

∑n
j=1
j �=k

� j =1−�k to
∑n

j=1
j �=k

� j =1,

and set 	 equal to a large enough value, model (6) becomes
model (3).

5. Application

We apply models (3) and (4) to two data sets used in Chen
(2004). One consists of the 20 largest Japanese companies in
1999 (see Table 1). The other consists of 15 of Fortune’s top
US cities in 1996 (see Table 2).

5.1. Japanese companies

The DEA inputs are assets (million $), equity (million $) and
number of employees and the DEA output is revenue (million
$). Either model (1) or model (2) indicates that five of them
are VRS-efficient (see last two columns in Table 1). DMU1
is infeasible under model (1) and DMU18 is infeasible under
model (2).

Table 3 reports the results from models (3) and (4) for
the five efficient DMUs. Model (3) yields a super-efficiency
score of 2.0161 for DMU1 with �∗ =0.0104 and �∗ =0.0057,
indicating that DMU1 has super-efficiency in both inputs and
outputs. Model (4) yields a super-efficiency score of 3.22798
for DMU18 with �∗ = 1.8999 and �∗ = −2.048, indicating
that DMU18 has super-efficiency in inputs only.
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Table 1 Japanese companies

DMU Company Asset Equity Employee Revenue Model (1) �∗
o Model (2) 1/�∗

o

1 MITSUI & CO. 50905.3 5137.9 40000 106793.2 infeasible 1.01523
2 ITOCHU CORP. 51432.5 2333.8 5775 106184.1 6.69295 1.3177
3 MITSUBISHI CORP. 67553.2 7253.2 36000 104656.3 0.74248 0.98068
4 TOYOTA MOTOR CORP. 112698.1 47177 183879 97387.6 0.4108 0.91191
5 MARUBENI CORP. 49742.9 2704.3 5844 91361.7 0.91739 0.89127
6 SUMITOMO CORP. 41168.4 4351.5 30700 86921 1.02091 1.0227
7 NIPPON TELEGRAPH & TEL. 133008.8 47467.1 138150 74323.4 0.26865 0.69594
8 NISSHO IWAI CORP. 35581.9 1274.4 19461 66144 1.14580 1.14784
9 HITACHI LTD. 73917 21914.2 328351 60937.9 0.40528 0.57061
10 MATSUSHITA ELECTRIC INDL. 60639 26988.4 282153 58361.6 0.47569 0.54648
11 SONY CORP. 48117.4 13930.7 177000 51903 0.54156 0.51337
12 NISSAN MOTOR 52842.1 9583.6 39467 50263.5 0.47975 0.4707
13 HONDA MOTOR 38455.8 13473.8 112200 47597.9 0.62931 0.59028
14 TOSHIBA CORP. 46013 8023.3 198000 40492.7 0.45933 0.41827
15 FUJITSU LTD. 39052.2 8901.6 188000 40050.3 0.53631 0.48833
16 TOKYO ELECTRIC POWER 110055.8 12157.7 50558 38869.5 0.18567 0.36397
17 NEC CORP. 38015 6517.4 157773 36356.4 0.50901 0.45666
18 TOMEN CORP. 16696 676.1 3654 30205.3 2.89988 infeasible
19 JAPAN TOBACCO 17023.6 10816.6 31000 29612.2 0.98076 0.9563
20 MITSUBISHI ELECTRIC CORP. 31997 4129.6 116479 28982.2 0.5218 0.44136

The bold numerals enable easy identification of items discussed in the paper.

Table 2 US cities

DMU City Houseprice Rental Violent Income B. Degree Doctor Model (1) �∗
o Model (2) 1/�∗

o

1 Seattle 586 581 1193.06 46928 0.6534 9.878 1.44335 1.0934
2 Denver 475 558 1131.64 42879 0.5529 5.301 1.01593 1.0527
3 Philadelphia 201 600 3468 43576 1.135 18.2 infeasible infeasible
4 Minneapolis 299 609 1340.55 45673 0.729 7.209 1.22752 1.086
5 Raleigh 318 613 634.7 40990 0.319 4.94 1.16766 infeasible
6 StLouis 265 558 657.5 39079 0.515 8.5 1.51628 infeasible
7 Cincinnati 467 580 882.4 38455 0.3184 4.48 0.94968 0.897
8 Washington 583 625 3286.7 54291 1.7158 15.41 infeasible 1.5344
9 Pittsburgh 347 535 917.04 34534 0.4512 8.784 1.04529 infeasible
10 Dallas 296 650 3714.3 41984 1.2195 8.82 0.92652 0.9532
11 Atlanta 600 740 2963.1 43249 0.9205 7.805 0.77243 0.8137
12 Baltimore 575 775 3240.75 43291 0.5825 10.05 0.73827 0.8009
13 Boston 351 888 2197.12 46444 1.04 18.208 infeasible 1.3181
14 Milwaukee 283 727 778.35 41841 0.321 4.665 1.06559 1.0276
15 Nashville 431 695 1245.75 40221 0.2365 3.575 0.80117 0.873

The bold numerals enable easy identification of items discussed in the paper.

Table 3 Results for Japanese companies

Input-oriented Output-oriented

DMU Company Super-efficiency �∗ �∗ Super-efficiency �∗ �∗

1 MITSUI &CO. 2.0161* 0.0104 0.0057 �2 = 1 1.01523 0 0.015 �2 = 0.9486, �6 = 0.0514
2 ITOCHU CORP. 6.693 5.693 0 �1 = 0.9605, �5 = 0.0395 1.3177 0 0.2411 �5 = 0.8109, �8 = 0.0218,

�18 = 0.1673
6 SUMITOMO CORP. 1.0209 0.0209 0 �1 = 0.7405, �18 = 0.2595 1.0227 0 0.0222 �1 = 0.7154, �18 = 0.2846
8 NISSHO IWAI CORP. 1.1458 0.1458 0 �2 = 0.473, �180.527 1.14784 0 0.1288 �2 = 0.3609, �18 = 0.6391
18 TOMEN CORP. 2.8999 1.8999 0 �2 = 0.6477, �8 = 0.3523 3.22798* 1.8999 −2.048 �2 = 0.6477, �8 = 0.3523

∗This indicates that the original super-efficiency model is infeasible.
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Table 4 Results for US cities

Input-oriented Output-oriented

DMU City Super-efficiency 	∗ �∗ Super-efficiency �∗ �∗

3 Philadelphia 2.8930* 0.8759 0.0168 �8 = 0.1123, �13 = 0.8877 3.5225* 0.3184 0.5463 �6 = 1
5 Raleigh 1.1677 0.1677 0 �6 = 0.3081, �14 = 0.6919 2.08478* 0.0359 0.0466 �6 = 1
6 StLouis 1.5163 0.5163 0 �1 = 0.2613, �4 = 0.0921, 2.7669* 0.1519 0.3808 �3 = 0.0299, �5 = 0.7057,

�5 = 0.1105, �9 = 0.5362 �14 = 0.2644
9 Pittsburgh 1.0453 0.0453 0 �3 = 0.0293, �6 = 0.9707 2.0764* 0.0430 0.0323 �6 = 1

13 Boston 2.5908* 0.5653 0.0249 �3 = 0.8403, �8 = 0.1597 1.31804 0 0.2413 �3 = 0.5478, �6 = 0.4522

∗This indicates that the original super-efficiency model is infeasible.

Table 3 also reports the benchmarks as indicated by the
non-zero �∗. It can be seen that DMU1 is benchmarked against
DMU2 by model (3) and DMU18 is benchmarked against the
convex combination of DMUs 2 and 8 by model (4).

Finally, note that �∗ = �∗ = 0 when model (1) (model (2))
is feasible.

5.2. US cities

The data set for the 15 US cities has three inputs, namely, high-
end housing price (1,000 US$), lower-end housing monthly
rental (US$), and number of violent crimes, and three outputs,
namely, median household income (US$), number of bach-
elor’s degrees (million) held by persons in the population, and
number of doctors (thousand).

The last two columns report the super-efficiency scores
from models (1) and (2). It can be seen that 10 cities are
efficient. There are seven infeasibility cases. Table 4 reports
the results from models (3) and (4) for these seven cases. Note
that DMU3 (Philadelphia) is infeasible under both models
(1) and (2). Our model (3) yields a super-efficiency score
of 2.893 (with �∗ = 0.8759 and �∗ = 0.0168) and model (4)
yields a super-efficiency score of 3.5225 (with �∗ = 0.3184
and �∗=0.5463). While model (3) benchmarks DMU3 against
DMUs 8 and 13, model (4) benchmarks DMUs against DMU6
(see columns 6 and 10).

The results in Table 4 indicate that all cities having no
feasible solutions in model (1) or (2) have super-efficiency in
both inputs and outputs, as indicated by �∗ > 0 and �∗ > 0.

6. Conclusions

The current paper develops a modified super-efficiency DEA
model to overcome the infeasibility issue under the assump-
tion of VRS. The newly developed approach yields (i) an
optimal solution and a super-efficiency score for efficient
DMUs for which feasible solutions do not exist under the orig-
inal super-efficiency model; and (ii) super-efficiency scores
that are equivalent to those from the original super-efficiency
model when feasible solutions do exist. To some extent, the
DEA Malmquist productivity index (Färe and Grosskopf,
1992), and the DEA benchmarking models (Cook et al, 2004)
have similar structures to that of the super-efficiency model.

The current study, therefore, offers the possibility to extend
the Malmquist productivity index and DEA benchmarking
models into situations where the non-CRS assumption of the
DEA frontier is required.
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