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Abstract This paper covers some of the past accom-

plishments of DEA (Data Envelopment Analysis) and some

of its future prospects. It starts with the ‘‘engineering-sci-

ence’’ definitions of efficiency and uses the duality theory

of linear programming to show how, in DEA, they can be

related to the Pareto–Koopmans definitions used in ‘‘wel-

fare economics’’ as well as in the economic theory of

production. Some of the models that have now been

developed for implementing these concepts are then

described and properties of these models and the associated

measures of efficiency are examined for weaknesses and

strengths along with measures of distance that may be used

to determine their optimal values. Relations between the

models are also demonstrated en route to delineating paths

for future developments. These include extensions to dif-

ferent objectives such as ‘‘satisfactory’’ versus ‘‘full’’ (or

‘‘strong’’) efficiency. They also include extensions from

‘‘efficiency’’ to ‘‘effectiveness’’ evaluations of perfor-

mances as well as extensions to evaluate social-economic

performances of countries and other entities where ‘‘in-

puts’’ and ‘‘outputs’’ give way to other categories in which

increases and decreases are located in the numerator or

denominator of the ratio (=engineering-science) definition

of efficiency in a manner analogous to the way output (in

the numerator) and input (in the denominator) are usually

positioned in the fractional programming form of DEA.

Beginnings in each of these extensions are noted and the

role of applications in bringing further possibilities to the

fore is highlighted.

Keywords Efficiency � Effectiveness � Social Indicators �
Engineering-science � Welfare economics � Distance

measures

1 Introduction

This paper covers some of the past accomplishments and

future prospects for DEA (Data Envelopment Analysis).

Attempts at covering past accomplishments usually take the

form of bibliometric studies. See, for instance, the biblio-

metric study by Emrouznejad et al. (2007). Entitled ‘‘A

Bibliography of Data Envelopment Analysis (1978–2003)’’

it lists more than 3,200 papers, books, etc., written by more

than 1,600 authors with a great variety of applications re-

ported in more than 42 countries. This occurred over the

25 year period 1978–2003 starting with publication of the

article by Charnes et al. (1978), as indicated by the title of

this bibliography, and more progress continues to occur at

an increasing pace. See also Gattoufi et al. (2004).

Here we take a different approach and try to bring to-

gether some of the ideas as well as some of the models and
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methods that have now been developed to deal with

problems in DEA formulations that have been, or might be,

encountered. Thus, in the next section, Sect. 2, we describe

how concepts embodied in two different definitions of

efficiency and directed to very different types of problems

can be joined together by DEA to increase the power and

scope of both. We discuss an example that uses the engi-

neering-science definition of efficiency, as in ratios of

output (e.g., work) to input (e.g., energy), that are used to

evaluate the relative efficiencies of jet aircraft engines. See

Mattingly (1996). We show how this one-output-to-one-

input ratio formulation can be extended to multiple outputs

and multiple inputs by recourse to the concept of ‘‘Pareto

efficiency’’ as used in welfare economics. This is accom-

plished by using a ‘‘fractional programming’’ DEA for-

mulation, which embodies (and generalizes) the

engineering-science definition. We then describe how this

fractional program gives way to an equivalent linear pro-

gramming model with a dual that effects the evaluations in

a manner that embodies the engineering-science definition

in the ‘‘multiplier model’’ and the Pareto (or Pareto-Ko-

opmans) definitions of efficiency in the dual or ‘‘envel-

opment model.’’

In Sect. 3, this discussion is accorded mathematical

form in a way that gives rise to the well known ‘‘Farrell’’

and ‘‘CCR’’ models of DEA. Weaknesses (as well as

strengths) in both models are noted for further develop-

ment by reference to definitions of ‘‘strong’’ (or ‘‘full’’)

and ‘‘weak’’ efficiency. To assist in these further devel-

opments, the next section of this paper (Sect. 4) charac-

terizes the Farrell (1957) measure in terms of its relations

to mathematical definitions of distance measures. The

Farrell ‘‘radial’’ measure is then treated as a ratio of two

measures of distance that accommodate an infinite num-

ber of such measures, all yielding the same value for their

ratio. This is also interpreted in terms of the ‘‘units

invariance’’ property of the Farrell measure. However, the

Farrell measure is not ‘‘complete’’ since it does not

comprehend all the inefficiencies that the model can

identify. The way this weakness is addressed by the CCR

model is then noted, but, as is also noted, uses of this

CCR model are accompanied by weaknesses in the

treatment of non-zero slacks that result in measures that

are not units invariant.

Section 5 turns attention to the ‘‘additive model’’ as a

natural evolute from the CCR model. This model is

inclusive but suffers from other difficulties such as a lack

of units invariance. In addition it may not be suitable for

use in identifying ‘‘benchmark’’ DMUs to be used in the

evaluations of DMUs because this model may identify

reference sets that are far removed from the DMU being

evaluated. See Coelli (1998).

Section 6 treats other measures and models that have

now been developed, which are all shown to be related to

the additive model. It starts with the ‘‘Slacks Based

Model’’ (SBM) introduced by Tone (2001) to deal with the

lack of units invariance in the additive model measure.

Attention is turned to the ‘‘Enhanced Russell Measure’’

(ERM) model of Pastor et al. (1999). After showing the

equivalence of SBM and ERM the discussion describes

some of the troubles that can be encountered in dealing

with non-positive data—such as may be encountered with

‘‘profits’’ and ‘‘losses,’’ say, as outputs. A model that can

deal with this problem, because it is ‘‘translation invari-

ant’’ as well as units invariant, is the RAM (Range Ad-

justed Measure) model of Cooper et al. (2001). In fact, it is

shown here that RAM is also ‘‘affine invariant’’—e.g., as

in transformations from Centigrade to Fahrenheit units of

temperature.

The RAM model also involves the adjunction of a

convexity condition. This might lead to a discussion of the

BCC model of Banker et al. (1984) and its use in returns-

to-scale evaluations. However, this is not discussed here

because this topic was recently surveyed in Chapter 2 of

Cooper et al. (2004) where reference is also made to the

use of ‘‘multiplicative’’ models in which ‘‘exact’’

(=numerically valued) elasticities of scale are shown to be

determinable without dependence on analyticity properties,

like those associated with the use of partial derivatives, to

determine their values.

Finally, Sect. 7 is directed to some of the many pros-

pects that are now available for future developments in

DEA.

2 DEA and extensions

As is well known, the basic ideas in DEA were first

developed and applied to empirical data in the path-

breaking article by Farrell (1957). Intended to correct

deficiencies found in productivity indexes, Farrell’s work

actually replaced the concept of productivity with the more

general concept of ‘‘relative efficiency.’’ Based on the

‘‘activity analysis’’ literature of Debreu (1951), and

Koopmans (1951), Farrell’s uses of these ideas were ac-

corded very little attention until after the publication by

Charnes et al. (1978) which extended and increased the

scope, the power and the computational convenience of

DEA in a manner that we will try to describe. This will

include drawing a distinction between the ‘‘weakly effi-

cient’’ performances, to which the Farrell and Debreu

measures were limited, and some of the ‘‘fully efficient’’

or ‘‘strongly efficient’’ characterizations that are now

available.
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We start by noting that Charnes et al. (1978) introduced

a ‘‘fractional programming’’ formulation in which the ra-

tios were restricted to lie between the values of zero and

unity. This formulation extended the usual engineering-

science single output-to-single input ratio measure of effi-

ciency to multiple inputs and outputs without requiring

recourse to a priori prescribed weights, such as are cus-

tomarily used in engineering to deal with such cases. This

fractional (=ratio) formulation provided access to the

Charnes and Cooper (1962) transformation that has led to

the area of research now known as ‘‘fractional program-

ming.’’ For a description of this area of research and its

uses see Schaible (1996). This transformation results in a

linear programming problem that is dual to the problem

formulated by Farrell. This in turn provides contact with

the concept of ‘‘Pareto (1909) optimality,’’ as used in

‘‘welfare economics,’’ that was later extended for use in

‘‘production economics’’ for ‘‘efficiency characteriza-

tions’’ by Koopmans (1951). It is therefore now referred to

as Pareto–Koopmans efficiency—viz.,

Definiton 1 Pareto–Koopmans efficiency is achieved by

a DMU (Decision Making Unit) if and only if it is not

possible to improve any of its inputs or outputs without

worsening some of its other inputs or outputs.

This definition means (1) it is not necessary to assign

relative weights, etc., to determine the relative importance

of the different inputs and outputs and (2) its fulfillment is a

necessary condition for optimality in any system where the

weights that might be assigned are all positive.

This fractional programming formulation has also pro-

vided a previously unknown contact between the efficiency

concepts of welfare economics and of engineering and

science. This extends the power and scope of both. Bulla

et al. (2000) provide an example involving the relative

evaluations of 29 jet aircraft engines that compares DEA

with engineering measures. The commonly used engi-

neering measures of efficiency for these engines consist of

the ratio of ‘‘work rate output’’ to ‘‘fuel energy input.’’

Using this same input and output, DEA produced the same

efficiency rankings as the engineering measure. When

DEA was expanded to three inputs and two outputs,

however, the results were quite different. DEA also offered

additional advantages such as information on the sources

and amounts of inefficiencies—information that was not

available from the engineering measure—as well as ‘‘dual

evaluators’’ to estimate the effects of changes in the con-

straints. See Table 2 in Bulla et al. (2000).

Further implications of this use of DEA can be described

as follows. The computations were executed not by the

ratio form, but by the linear programming equivalent

derived from the Charnes–Cooper transformation of frac-

tional programming. Hence, the evaluations were made by

means of the Pareto–Koopmans definition of efficiency, as

in welfare economics, but were interpreted in terms of their

engineering-science equivalents represented by the corre-

sponding fractional form. Thus both definitions of effi-

ciency were brought into play and, as should be evident,

this two-way contact can also make it possible for the

engineering-science definition of efficiency to be applied to

propositions in welfare economics, if desired, as has now

been done in many of the DEA applications that have been

reported.

Pareto did not supply anything more than a criterion for

choosing between prescribed alternatives. Koopmans ex-

tended these possibilities by introducing the concept of

‘‘efficiency prices’’ which provide a basis for determining

the ‘‘opportunity costs’’ of extending a proposed change to

additional alternatives. This kind of extension can be

brought to bear in uses such as ‘‘compensating variations,’’

as they are called in economics, that can further advance

social welfare by using potential gains to compensate

persons who might otherwise be worsened by the proposed

changes.

Koopmans restricted his ‘‘efficiency prices’’ for use

only with ‘‘final goods’’ as he termed the ‘‘outputs.’’

However, as shown in Chapter 9 of Charnes and Cooper

(1961) these efficiency prices can be regarded as ‘‘dual

evaluators’’ available from the duality relations of linear

programming. Indeed, as shown in this same Chapter 9, the

activity analysis approach is a special case of linear pro-

gramming so that the full range of possibilities for uses of

duality and the computational powers of linear program-

ming become available. For instance, embedding ‘‘effi-

ciency prices’’ in these duality relations makes it possible

to extend these ‘‘opportunity cost’’ evaluations so that

inputs as well as outputs can be brought into play without

recourse to ‘‘unit costs,’’ or like data requirements. See

Dantzig (1963) pp. 265–275 for a description of various

uses of these duality relations.

Still more possibilities are opened for exploitation along

this route. In DEA the dual variable values (=multipliers)

take the form of per unit increments in efficiency but other

extensions and modifications can be made. In addition, and

more importantly, the resulting evaluations are not

restricted to the ceteris paribus (all else held constant)

characterizations that are usually used in economics.

Instead, they are associated with all of the changes needed

to optimally adjust all inputs and outputs to any changes

that may be proposed for particular subsets of inputs or

outputs. To borrow from Robinson (1933), these are

mutatis mutandis adjustments so that, step by step, all

changes are accompanied by optimal adjustments in all

other inputs and outputs. See Cooper et al. (2000) for a use

of this concept that extends the usual elasticities and rates
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of substitution (ceteris paribus) approaches in economics

to more general mutatis mutandis approaches.

Another example of advantages from extensions to inputs

as well as outputs may be found in Cooper et al. (2006)

where the duality relations of linear programming are de-

scribed for use in extending the aggregation of efficiency

measures to situations in which resource transfers can be

made from one DMU to another in order to increase the

efficiency of the system. In this way the attainment of full

efficiency by all DMUs becomes a necessary but not a

sufficient condition for efficiency of the system. In this

aggregation of efficiency measures the extension to inputs as

well as to outputs is crucial. See, for instance, the ‘‘proofs’’

by Blackorby and Russell (1999), which are directed to

showing that satisfactory aggregation measures cannot be

achieved in DEA. However, the aggregation in Cooper et al.

(2006) succeeds because Blackorby and Russell confined

themselves to measures that are incomplete.

3 Fractional and linear programming forms

We now give this development precise mathematical form.

We start with the fractional programming formulation

which (1) generalizes the one-output-to-one-input ratio of

engineering and science and (2) derives its efficiency

evaluations for each DMU relative to the performances of

all DMUs. The model we use is

max hoðu; mÞ ¼
P

r uryro=
P

i mixio

subject to
P

r uryrj=
P

i mixij � 1 for j ¼ 1; . . . ; n;

with

ur
Pm

i¼1

mixio

; mi
Pm

i¼1

mixio

� e[0;

ð1Þ

where yrj and xij are observed values of outputs and inputs,

r = 1,...,s, and i = 1,...,m, for each of j = 1,...,n DMUs

(Decision Making Units) and the yro and xio in the objective

function represent the outputs and inputs for the DMUo to

be evaluated. Here e is a non-Archimedean element smaller

than any positive real number. See Arnold et al. (1997) for

the relation of this non-Archimedean element to ‘‘non-

standard’’ mathematics. This use of e > 0 guarantees that

solutions will be positive in all variables so that ‘‘some’’

worth, however small, will be accorded to each input and

output.

Problem (1) is nonlinear and non convex. However, we

can apply the Charnes and Cooper (1962) transformation of

variables and convert it to an equivalent linear program-

ming problem:

max z ¼
Ps

r¼1

lryro

subject to
Ps

r¼1

lryrj �
Pm

i¼1

mixij � 0; j ¼ 1; . . . ; n;

Pm

i¼1

mixio ¼ 1

lr; mi � e[0;

ð2Þ

for which the LP dual is

z�o ¼ min h� e
Pm

i¼1

s�i þ
Ps

r¼1

sþr

� �

subject to
Pn

j¼1

xijkj þ s�i ¼ hxio i ¼ 1; 2; . . . ;m;

Pn

j¼1

yrjkj � sþr ¼ yro r ¼ 1; 2; . . . ; s;

k; s�i ; s
þ
r � 0 8i; j; r:

ð3Þ

Notice now that both (1) and (2) incorporate the engi-

neering-science definition of efficiency with (2) evaluating

the denominator in the objective at unity. Incorporation of

the Pareto–Koopmans definition of efficiency occurs in (3).

Hence, as was noted in our introduction, the two definitions

are related to each other by the duality theory of linear

programming.

The latter member of this dual pair of linear program-

ming problems—i.e. (3)—is referred to as the ‘‘envelop-

ment model.’’ This is because, applied successively to each

member of a set of n DMUs, it generates an ‘‘efficiency

frontier’’ that ‘‘envelops’’ a ‘‘production possibility set.’’

The first member of this dual pair—i.e., (2)—is referred to

as the ‘‘multiplier model’’ because it yields the dual

variables that evaluate the outputs and inputs represented

by the xio and yro for DMUo in a manner that differs

from the ordinary uses of weights selected on an a priori

basis.

Because it generally has fewer constraints, (3) is easier

to compute. Nothing is lost in doing so, moreover, since

most computer codes use the simplex algorithm of linear

programming which automatically generates solutions to

both problems when it is used to solve either of them.

Access to the optimal lr and mi as well as the optimal kj and

h is thus provided without extra effort.

Turning now to the non-Archimedean e > 0, we note that

it is not a real number and hence cannot be assigned a

numerical value. See Ali and Seiford (1990a) who provide

examples in which choices of smaller real numbers for the

value of e lead to worsened results. However, it is not

necessary to assign e a numerical value. Most DEA com-

puter codes deal with (3) in a two-stage manner as follows:

In stage one the slacks in (3) are omitted from the objective.

In stage two the sum of the slacks is maximized with h = h*
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fixed in the constraints from the solution achieved in stage

one.

We might now note that the stage one model is referred

to as the ‘‘Farrell model’’ because it is the one used in

Farrell (1957). In the economics portion of the DEA lit-

erature it is often said to conform to the assumption of

‘‘free disposal’’ because it assigns a zero coefficient to

every slack variable as part of the measure of efficiency. In

the operations research portion of the DEA literature the

‘‘Farrell measure’’ is said to provide a measure of ‘‘weak

efficiency’’ in order to reflect the fact that inefficiencies

represented by the non-zero slacks are omitted from this

measure.

We conclude this section with the following mathe-

matical formulation of Definition (1).

Definition 2 ‘‘Full’’ or ‘‘strong’’ efficiency—i.,e., Pareto

Koopmans efficiency—is attained if and only if an optimal

solution to (5) fulfills both of the following conditions:

(i) h* = 1

(ii) All slacks are zero

‘‘Weak’’ efficiency is attained if only condition (i) is

satisfied.

4 Measures of distance

The Farrell measure given by (i) in Definition 2 is some-

times referred to as a measure of ‘‘distance.’’ See Gross-

kopf et al. (1999, p. 609), for instance. This is not correct.

Dmitruk and Koshevoy (1991) in their critique of Fare and

Lovell (1978) say it is not a distance function and, instead,

refer to it as a ‘‘gauge function.’’ However, they fail to say

what this means in the way of a measure of efficiency or

why it is satisfactory for use in DEA-like evaluations.1

To clear up the confusion we note that the ‘‘Farrell’’

measure is commonly referred to as a ‘‘radial measure’’

but this is not revelatory for its uses in DEA. We say,

instead, that the ‘‘Farrell’’ measure mathematically repre-

sents the ratio of two measures of distance: (a) the distance

on a ray from the origin to the point with coordinates that

represents the performance of the DMUo being evaluated

and (b) the distance from the origin to the point where this

ray intersects the frontier. We also show that

0 � h� ¼ dð0; x1Þ
dð0; x2Þ

� 1; ð4Þ

where the denominator refers to the distance from the

origin to the point being evaluated, and the numerator re-

fers to distance from the origin to the point of intersection

with the frontier, with both points lying on the ray de-

scribed in (a) and (b).

To show what is mathematically involved, we focus on

the lp metric defined by

‘p ¼ dðx1; x2Þ ¼
Xn

j¼1

x1j � x2j

�
�

�
�1=p

 !

; p � 1: ð5Þ

We focus on this measure because it is, by far, the most

commonly used measure as in, for instance, the ‘2 metric

that is used in least squares statistical estimates. We now

note that (5) satisfies all of the conditions for a distance

measure in (general) vector spaces—viz.

(i) non-negativity: d(x1, x2) ‡ 0, d(x1, x2) = 0 iff x1 = x2.

(ii) symmetry: d(x1, x2) = d(x2, x1).

(iii) triangle axiom: d(x1, x3) £ d(x1, x2) + d(x2, x3),

where x1, x2 and x3 are points in an n-dimensional

vector space. See Appendix A in Charnes and Cooper

(1961). See also Saaty and Braun (1964, p. 369) where

distance is mathematically linked to the definitions of a

metric space.2

We now put this all together with the following,

Theorem 1 Every ‘p metric, including ‘¥ satisfies (4):

Proof Because the points x1 and x2 are on the same ray

we have x2 = kx1 for some k ‡ 1. Using (4) we have 1/

h* = k ‡ 1 representing the relative difference of distances

from the origin to x1 and x2, respectively, with k > 1 rep-

resenting a measure of inefficiency and h* a measure of

efficiency, and h*, k = 1 only when x1 = x2. Using x2 = kx1

because they are on the same ray,

Pn

j¼1

x11j jpþ x12j jpþ � � � þ x1nj jpð Þ
 !1=p

Pn

j¼1

x21j jpþ x22j jpþ � � � þ x2nj jpð Þ
 !1=p

¼

Pn

j¼1

x11j jpþ x12j jpþ � � � þ x1nj jpð Þ
 !1=p

Pn

j¼1

kx11j jpþ kx12j jpþ � � � þ kx1nj jpð Þ
 !1=p

¼ 1

k

1 See Sobczyk (1956) for a definition of gauge functions and their

uses with convex regions.

2 The concept of a ‘‘directed distance’’ is discussed in terms of the

distance from a point to a hyperplane on page 164 in Charnes and

Cooper (1961).
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for any p. Hence, setting 1/k = h* we find that (4) is sat-

isfied since k ‡ 1. �

Figure 1, above, illustrates the situation for the case of 2

inputs and one output with the solid lines representing level

lines or isoquants with k ‡ 1 relating the points x1 and x2to

each other. Hence we have 1/h* = k ‡ 1 representing the

relative difference in distance from the origin to x1 and x2,

respectively, with k representing a measure of inefficiency.

The two will coincide with k = h* = 1 if and only x1 = x2 in

which case efficiency is achieved.

We also have the following

Corollary The resulting measures are ‘‘units invariant.’’

That is, the same values for k and h* will be obtained with

any unit of measure being employed for x1 and x2 because

the numerator and denominators will be measured in the

same units and will therefore cancel.

A weakness of the Farrell measure lies in the fact that it

may fail to distinguish between efficient and inefficient

performances. This is illustrated by x3, an observation

which is on the frontier with a Farrell measure of unity. This

is only weak efficiency, however, since movement from x3

to A reduces input 2 without increasing input 1. See Defi-

nition 1. Further, the Farrell measure for x4 is given by

h* < 1 with intersection at C where k > 1. This does not

eliminate all of the inefficiencies, however, since movement

from C to B reduces input 1 without increasing input 2, as

implied by the Pareto–Koopmans definition of inefficiency.

5 Additive model

Various models with associated measures have been de-

vised to eliminate this weakness of the Farrell model. An

example is the ‘‘additive model’’ which was introduced in

Charnes et al. (1985). This model can be represented by

setting h* = 1 in (3). The conditions for full or ‘‘strong’’

efficiency set forth in Definitions 2 then give way to

Definition 3 Full or Strong (Pareto-Koopmans) efficiency

is attained for DMUo with an additive model if and only if

all slacks are zero in an optimum solution. That is, if and

only if si
–* = sr

+* = 0 "i, r in (6), below.

It is to be noted that the objective being optimized in (3)

provides measures of two different types of efficiency: (a)

min h = h* £ 1 is a measure of ‘‘purely’’ technical effi-

ciency in which a value of 1 – h* provides a measure of the

inefficiencies that can be removed without altering any of

the input proportions and (b) max
Pm

i¼1 s�i þ
Ps

r¼1 sþr ¼Pm
i¼1 s��i þ

Ps
r¼1 sþ�r in the second stage for solving (3)

maximizes the remaining inefficiencies that represent

changes in input proportions (or mixes) that can also be

made without altering the already achieved value of h*. In

this way all inefficiencies are accounted for. Hence we say

that the measure, zo
*, in (3) is ‘‘complete’’ because it ac-

counts for all inefficiencies that the model can identify. See

Cooper et al. (1999a, b).

The additive model achieves this same result by elimi-

nating h from (3) and replacing the objective with

max
Xm

i¼1

s�i þ
Xs

r¼1

sþr

 !

: ð6Þ

This uses the ‘1 measure of distance as illustrated in

Fig. 1 by the horizontal and vertical lines with associated

values s1
– and s2

+ representing the reductions in input 1 and

input 2 that are required for x4 to achieve efficiency at B.

The resulting measure of inefficiency for the performance

of x4 in this ‘1 metric is s1
–* + s2

+* ‡ 0.

Like zo
* in (3), the additive measure (6) is ‘‘complete.’’

That is, as specified in Cooper et al. (1999a, b), this measure

reflects all of the inefficiencies that the model can identify.

Moreover, it has other attractive properties such as the

property of ‘‘translation invariance’’ when the constraint
Pn

j¼1 kj ¼ 1 is adjoined so that, inter alia, uses of the

additive model are not confined to positive—or even non-

negative—values of the xij, yrj. See Ali and Seiford (1990b).

For clarity, as well as for conformance to common

usage, (3) is referred to as the CCR model even when the

constraint
Pn

j¼1 kj ¼ 1 is included. Introduced in Charnes,

Cooper and Rhodes (1978) it led to the additive model that

was introduced in Charnes, et al. (1985). The latter, in turn,

opened a path for the further developments that we de-

scribe in the next section. We conclude the present section

with the following theorem which relates the additive to the

CCR model.

Fig. 1 Distance measures
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Theorem 2 The additive model will identify a DMU as

efficient if and only if the CCR model represented in (3)

also identifies it as efficient.

This theorem is proved in Ahn et al. (1988) so we need

not prove it here. We do note, however, that an immediate

corollary is that achievement of efficiency with the additive

model is sufficient but not necessary for the achievement of

efficiency in the Farrell model.

Remark T. Coelli (1998) has noted the possibility of ‘‘far

removed’’ reference sets to conduct evaluations with the

additive model. This means that the additive model is

likely to be unsatisfactory for identifying benchmark can-

didates to improve the performances of inefficient DMUs.

See Coelli (1998) for a discussion of how to choose a best

reference set of DMUs.

6 Alternative models and measures

Various attempts have been made to address deficiencies in

the additive model. The ‘‘Slacks-Based Measure’’ (SBM)

of Tone (2001) is an example in which the property of units

invariance is preserved. We present this model in vector-

matrix form as follows:

min q ¼
1� 1

m

Pm

i¼1

s�i =xio

1þ 1
s

Ps

r¼1

sþr =yro

subject to

xo ¼ Xkþ s�

yo ¼ Yk� sþ

o � k; s�; sþ:

ð7Þ

These constraints are the same as for the additive model.

The objective, however, is replaced by representing the

input and output slacks in fractional programming form.

The slacks are used to account for all inefficiencies in a

manner that differs from the additive model and yields a

measure that satisfies

0 � min q ¼ q� � 1; ð7:1Þ

with q* = 1 if and only if DMU is strongly (i.e., Pareto-

Koopmans) efficient. This efficiency is attained if and only

if all slacks are zero just as for the additive model. See

Definition 3.

For the Charnes–Cooper transformation, t, Tone uses

t 1þ 1
s

Ps
r¼1 sþr =yro

� �
¼ 1 so

t ¼ 1= 1þ 1

s

Xs

r¼1

sþr =yro

 !

[0: ð7:2Þ

Multiplying numerator and denominator in the objective

of (7) by this t > 0 leaves its value unchanged. We can

therefore replace (7) by

min q0 ¼ t � 1

m

Xm

i¼1

s�0i =xio

subject to

txio ¼
Xm

j¼1

xijk
0
j þ s�0i ; i ¼ 1; . . . ; n

tyro ¼
Xn

j¼1

yrjk
0
j � sþ0r ; r ¼ 1; . . . ; s

1 ¼ t þ 1

s

Xs

r¼1

sþ0r

0 � k0j; s
�0
i ; s

þ0
r ; 8i; j; r:

ð8Þ

where si
–¢ = tsi

–, sr
+¢ = tsr

+, kj
¢ = tkj, "i, j, r.

Full (or strong) Pareto–Koopmans efficiency is achieved

if and only if si
–¢* = 0 "i and t* = 1. The latter implies sr

+¢*

= 0 "r, via (7.2), so t* plays a role analogous to the

transformation used in going from (1) to (2) but with the

additional property that t* = 1 implies sr
+¢* = 0,"r. Evi-

dently the objective in (7) and hence in (8) is units

invariant and si
–¢ £ xio "i si

–¢ /xio £ 1,"i, so q¢*, is

stated in terms of the average proportion of input ineffi-

ciency.

Theorem 4 SBM, as in (8), will identify a DMUo as

efficient if and only if the additive model also identifies it as

efficient.

Proof This is obvious.

Bardhan et al. (1996) show other routes which, inter

alia, can also be used to relate (8) and the additive

model to other models such as the FDH (=Free Disposal

Hull) model of Tulkens et al. (1993). They also develop

ways in which this measure can be made more attractive.

However, we do not follow their developments. Instead,

we turn to another model (and measure) and show this

that it, too, is related to the additive model. This is the

‘‘Russell Measure,’’ and model, introduced in Färe and

Lovell (1978).

The formulation in Färe and Lovell (1978) uses only the

inputs in their measure of efficiency. This measure is

incomplete. We therefore turn to the formulation used by

Färe, Grosskopf of and Lovell (1985, 1994),
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min R
Pm

i¼1

hi;
Ps

r¼1

1=/r

� �

¼

Pm

i¼1

hiþ
Ps

r¼1

1=/r

mþs

subject to

hixio �
Pn

j¼1

xijkj; i ¼ 1; . . . ;m

/ryro ¼
Pn

j¼1

yrjkj; r ¼ 1; . . . ; s

0 � hi � 1; 1 � /r; 8i; r
0 � kj j ¼ 1 . . . ; n:

ð9Þ

The objective is therefore to minimize the average value

of the input plus output efficiencies as measured by the

optimal hi and 1//r. The resulting measure is complete as

well as units invariant and has other attractive properties.

However, it is computationally difficult,3 so we turn to

alternatives. Färe et al. (1985, 1994), for example,

decompose the Russell measure into input and output ori-

ented variants. This loses the property of completeness,

however, so we turn to another version which has recently

become available in Pastor et al. (1999). See also Bardhan

et al. (1996).

This model takes the following ‘‘fractional program-

ming’’ form

min Rðxo; yoÞ ¼

Pm

i¼1

hi=m

Ps

r¼1

/r=s

subject to

hixio �
Xn

j¼1

xijkj; i ¼ 1; . . . ;m

/ryro �
Xn

j¼1

yrjkj; r ¼ 1; . . . ; s

0 � hi � 1; 1 � /r; 8i; r
0 � kj; j ¼ 1 . . . ; n:

ð10Þ

Pastor et al. refer to this as the ‘‘Enhanced Russell

Graph Measure of Efficiency’’ but we shall refer to it as the

ERM (Enhanced Russell Measure) model . The objective in

(10) gives

0 �

Pm

i¼1

hi=m

Ps

r¼1

/r=s

¼
Xm

i¼1

hi=m

 !
Xs

r¼1

/r=s

 !�1

� 1; ð11Þ

which means that it can be interpreted as the product of the

average input and average output efficiencies with the

geometric mean (=square root) of the optimal value of (11)

serving as the measure of efficiency. Alternatively the

numerator and denominator values, which are also available,

can be separately interpreted as the average input efficiency

and the average output inefficiency, respectively, with R(xo,

yo) = 1 if and only if full efficiency is attained. Thus full

efficiency is attained if and only if, at an optimum,

h�i ¼ /�r ¼ 1; all i all r: ð12Þ

This model has the properties of completeness and units

invariance. It also has other attractive properties such as

‘‘strong [=strict] monotonicity,’’ etc., as described in

Pastor et al. (1999). As yet another property, it can be re-

lated to SBM and thus to the additive model. In fact, we

have the following theorem which we now prove.

Theorem 5 ERM and SBM are equivalent in that k�j
values that are optimal for one are also optimal for the

other.

Proof A necessary condition for optimality in ERM is

that the constraints must be satisfied as equalities. We can

therefore replace the above constraints by

hi ¼
Pn

j¼1

xijkj=xio; i ¼ 1; . . . ;m

/r ¼
Pn

j¼1

yrjkj=yro; r ¼ 1; . . . ; s:

Following Pastor et al. (1999) or Bardhan et al. (1996)

we next set

hi ¼ xio�s�i
xio
¼ 1� s�i

xio
; i ¼ 1; . . . ;m

/r ¼
yroþsþr

yro
¼ 1þ sþr

yro
; r ¼ 1; . . . ; s:

ð13Þ

Substituting these values into the immediately preceding

expression, we get

xio ¼
Pn

j¼1

xijkj þ s�i ; i ¼ 1; . . . ;m

yro ¼
Pn

j¼1

yrjkj � sþr ; r ¼ 1; . . . ; s

These are the same as the ‘‘additive model’’ constraints

used in SBM.

3 Our attention has recently been called to Sueyoshi and Sekitani

(2007) that uses cone programming based approach to solve (9) in a

straightforward manner. Hence practically implementable alternative

are now available. See Cooper et al. (2007) for the advantages of

using ERM rather than RM to deal with the aggregation problem in

DEA.

158 J Prod Anal (2007) 28:151–163

123



Turning to the additional conditions 0 £ hi £ 1, 1 £ /r in

ERM we again utilize (13) to obtain 0 £ si
– £ xio and 0 £ sr

+ "i,

r. The condition si
– £ xio is redundant since, as noted earlier, it

is satisfied by the constraints of the additive model and may

therefore be discarded. We then have the usual non-negativity

conditions satisfied as 0 £ si
–, 0 £ sr

+, "i, r.

Turning to the objective in (10) this same substitution

from (13) yields

s

m

Pm

i¼1

hi

Ps

r¼1

/r

¼ s

m

Pm

i¼1

1� s�i
xio

� �

Ps

r¼1

1þ sþr
yro

� � ¼
1� 1

m

Pm

i¼1

s�i
xio

1þ 1
s

Ps

r¼1

sþr
yro

which is the same as the objective of SBM in (7). We may

therefore use SBM to solve ERM, or vice versa, with

assurance that any kj
* that are optimal for one model are

also optimal for the other. �

ERM like SBM does not possess the property of trans-

lation invariance. See Portela et al. (2003) for an example

of the importance of the property of translation invariance.

Hence their uses are confined to positive ranges in the data.

We therefore turn to another model that is both units

invariant and translation invariant. This is the RAM (Range

Adjusted Measure) model introduced in Cooper et al.

(1999a, b), which takes the following form,

max 1
mþs

Pm

i¼1

s�i =R�i þ
Ps

r¼1

sþr =Rþr

� �

subject to

xio ¼
Pn

j¼1

xijkj þ s�i ; i ¼ 1; . . . ;m

yro ¼
Pn

j¼1

yrjkj � sþr ; r ¼ 1; 2 . . . s

1 ¼
Pn

j¼1

kj

0 � kj; s
�
i ; s

þ
r ; 8i; j; r:

ð14Þ

Here Ri
– and Rr

+ represent the ‘‘ranges,’’ and a measure

of efficiency is given by

0 � C ¼ 1� 1

mþ s

Xm

i¼1

s�i
R�i
þ
Xs

r¼1

sþr
Rþr

 !

� 1; ð15Þ

which, as can be seen, is a ‘‘weighted’’ version of the

additive model.

Reciprocals of these ranges provide data dependent

weights and are not determined in an a priori manner. They

are also not affected by the addition of an arbitrary constant

in any input or output row since

R�i ¼ �xi � xi ¼ �xi þ dið Þ � xi þ dið Þ; i ¼ 1; . . . ; n

Rþr ¼ �yr � y
r
¼ �yr þ crð Þ � y

r
þ cr

� �
; r ¼ 1; . . . ; s:

ð16Þ

where �xi; xi and �yr; yr are maximal and minimal observa-

tions and the di and cr are arbitrary constants. The condition
Pn

j¼1 kj ¼ 1 accords the same property to the constraints

since, as shown in Ali and Seiford (1990b), the adjunction

of this convexity condition makes all additive models

translation invariant. This model is therefore both units and

translation invariant. This makes it possible to treat non-

positive inputs or outputs by converting them to positive

values. See the exchange between Steinmann and Zweifel

(2001) and Cooper et al. (2001). This convexity condition

also makes it possible to handle situations in which the

ranges are zero by simply omitting the slack variables from

the objective and the constraints with which they are

associated since these slacks will necessarily be zero.

We conclude this section with the following.

Theorem 6 The measure in the RAM model is affine

invariant.4 That is, it is invariant to transformations of the

form x¢ij = bi (xij + ai), y¢rj = cr (yrj + dr) for each i and

each r for all j = 1,...,n. ai, bi, cr, dr are constant with bi ,cr

> 0 but the constants are otherwise arbitrary.

This theorem is proved in Cooper et al. (2006) so we do

not prove it here. Instead we note that all of these models,

including RAM, represent extensions of the additive

model. As additional evidence of its fundamental character

of that model we might note that the additive model pro-

vides a bridge for contacts with other disciplines such as

are represented by multiple objective decision making in

operations research and LAV (Least Absolute Value)

estimation in statistics. See Cooper (2005) and Charnes

et al. (1985).

7 Conclusions and prospects for the future

We have now covered some of the measures and models

that are available from past accomplishments. We do not

go further into these models and other variants that have

been derived to deal with non-discretionary variables and/

or returns to scale, etc. We have also confined attention to

‘‘technical efficiency’’ and so have omitted important

developments in topics like ‘‘total,’’ ‘‘allocative’’ and

‘‘returns-to-scale’’ efficiencies. Even in the treatment of

technical efficiency we did not include attractive properties

of the ‘‘multiplicative model’’ other than to note that it is

unique in being able to provide estimates of ‘‘exact’’ (i.e.,

numerically valued) scale elasticities without any need to

use partial derivatives or like mathematical concepts. See

Banker et al. (2004). See also Charnes et al. (1983).

4 Russell (1985) refers to this property as ‘‘commensurability’’ but we

think that ‘‘affine invariant’’ is more descriptive.
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The topics we have covered are sufficient, however, to

show the great progress that has been made (and is being

made) in DEA as well as problems that merit attention in

future research. This includes the possibility of combining

desirable benchmarking selections with other desirable

properties such as ‘‘completeness,’’ ‘‘units invariance’’

and ‘‘translation invariance’’ such as were illustrated for

the RAM model described in the last part of the preceding

section.

This is not the end of the road. As already noted, Coelli

(1998) has opened an avenue that invites exploration in the

form of algorithms directed to identifying better reference

groups—e.g., for benchmarking—without losing properties

that are also desirable. See also Portela et al. (2004) for a

survey of alternatives and a proposed use of FDH models

and methods. Additional possibilities are also open for

exploitation that include the use of DEA network com-

puting capabilities like those described in Sueyoshi and

Honma (2003). In addition to providing an ability to deal

with very large problems more economically and in smaller

times, this path also opens the possibility of combining

results from several models to obtain properties that are not

available from any one of them when used separately. It

goes without saying that such increases in computational

power and efficiency will also be needed as extensions are

made to dynamic DEA models in which the number of

DMUs is likely to increase in a combinatorial manner. See

Sengupta (1995) and Färe and Grosskopf (1996). Finally,

opportunities exist for joint uses of now available methods

on the same model and data that make it possible to

identify sources of trouble in the data which can be cor-

rected by use of a frontier (in contrast to an OLS regres-

sion). See Brockett et al. (2007) for a use of DEA to locate

defects in the data and how they can be dealt with that

range from sample bias to errors in processing the data.

As noted in the preceding section of this paper, the

RAM model deals with data dependent weights in the form

of ranges (or their reciprocals) that makes this model affine

invariant. This is not the only such possibility. Lovell and

Pastor (1995), for example, utilize standard deviations, or

their reciprocals, instead of ranges. This choice, however,

is accompanied by limitations like those described on p. 21

of Cooper et al. (1999a, b). Also data dependent weights

are not the only possible choice so other avenues need to be

explored. For guidance in such explorations we recom-

mend the discussion of ‘‘goal vectors’’ on pp. 120–125 in

Thrall (1996) who brings to bear his extensive knowledge

of ‘‘dimensional analysis,’’ as employed in mathematics

and the natural sciences, to help in making selections.

Another inviting avenue for development lies in the

selection of objectives. Here we have restricted conside-

ration to ‘‘strong’’ versus ‘‘weak’’ efficiency. Other choi-

ces could include the attainment of ‘‘satisfactory’’ levels of

efficiency such as are comprehended in the concept of

‘‘satisficing’’ due to Simon (1957), Chap. 14,—a concept

that has been accorded widespread acceptance in cognitive

psychology. See Gigerenzer (2004). Here, too, a start for

uses of ‘‘satisficing’’ objectives in DEA has been made by

according it a chance-constrained programming formula-

tion in Cooper et al. (1996). Transformed to equivalent

deterministic forms this kind of objective has also been

useful in locating organizational (or budgetary) slack in

U.S. Air Force activities. See Bowlin (1984) and Charnes

et al. (1989).

Still another course of development along these lines

takes the form of expanding DEA beyond efficiency

evaluations. One such course would expand DEA from

‘‘efficiency’’ to ‘‘effectiveness’’ evaluations. See p. 66 in

Cooper et al. (2000) or p. 63 in Cooper et al. (2006) for

definitions of these two concepts and their relations to each

other. Once again, a start has been made in Prieto and Zofio

(2001) who use DEA to evaluate the effectiveness of

Spanish municipalities in achieving goals (specified by the

central government) in areas such as the provision of water

quality, sewage treatment, paving and lighting and artistic

and sporting facilities.

Continuing on this path one can envision mixtures such

as in Golany and Thore (1997) who evaluate the social

performances of countries. Here the ‘‘inputs’’ and ‘‘out-

puts’’ consist of mixtures such as ‘‘infant mortality,’’ a

social performance factor, and gross domestic product per

capita, an economic performance factor. See also the study

by Takamura and Tone (2003) which is devoted to relo-

cating the political capital of Japan from Tokyo to other

locations (which is now under consideration by the Japa-

nese Diet) and considers factors like ‘‘safety’’ in the event

of an earthquake or a volcano, along with reductions of

congestion in Tokyo and increases in congestion in other

locations—which are compared for ‘‘best’’ and ‘‘worst’’

possibilities.

We might also consider uses of DEA to synthesize

‘‘social indicators’’ such as is done by Ramanathan (2007)

who evaluates the social performances of Middle East and

North African Arab countries with ‘‘inputs’’ like ‘‘% infant

mortality’’ and ‘‘outputs’’ like ‘‘% female teachers’’ and

‘‘life expectancy at birth.’’ To determine inputs vs. outputs,

Ramanathan uses the conceptual power of the fractional

objective in (1) to determine whether an increase in the

designated attribute should be placed in the numerator or

the denominator—and hence should be regarded as an

‘‘input’’ or an ‘‘output’’—according to whether an in-

crease in the designated attribute would increase or de-

crease the value of the DEA ratio score for each of 15 Arab

countries. See also Despotis (2005) who adapts a similar

approach and uses DEA to improve upon the ‘‘Human

Development Index’’ used by the United Nations in
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addition to its ‘‘Standard of Living Index’’ for different

countries.

Of course, there are advances still to be made in other

areas such as the joining of statistical considerations to

DEA estimates. See, e.g., the use of maximum likelihood

estimates in Banker and Natarajan (2004) or the use of

bootstrapping in Simar and Wilson (2004). The paths we

have already outlined should both profit from and con-

tribute to such statistical developments. Here, too, addi-

tional alternatives invite exploration. One example is the

use of DEA in combination with ordinary least squares

which is accomplished in the following two-stage manner:

DEA is employed in stage one to identify the observations

associated with efficient performances. In stage two the

first-stage results are incorporated in the form of ‘‘dummy

variables’’ in ordinary least squares regressions to obtain a

new approach to estimating stochastic frontiers. In an ex-

tended simulation this approach was found to give better

results than ordinary least squares or stochastic frontier

regressions. See Bardhan et al. (1998). This two-stage ap-

proach also proved to be the best of three alternative ap-

proaches in an actual application to evaluate the efficiency

of alternative advertising strategies for use in military

recruitment. See Brockett et al. (2002, 2004, 2007).

Another approach to treating imprecise data pioneered

by Cook et al. (1993) is directed to the treatment of ordinal

data. This was extended by Cooper et al. (2001) to include

the treatment of bounds on the data and also on the vari-

ables, as in the Assurance Region approach of Thompson

et al. (1986, 1990), which is applied to evaluating the

branch office performances of a Korean mobile telecom-

munication company to allow for regional differences such

as hills or mountains that affect performances. See Cooper

et al. (2001). Work along these lines continues in the form

of simplifying the transformations used to convert these

nonlinear problems in ways that cast additional light on the

performances of Assurance Regions and like approaches in

DEA. See Park (2004).

Combining these imprecise data treatments with the

statistical approaches discussed in Banker and Natarajan

(2004) or Simar and Wilson (2004) should greatly extend

the power and the applicability of both. Their combination

should also extend the range of applications for DEA and

thereby expand this source of problems and opportunities

for further development in DEA. This could include

helping DEA to expand into the area of consumer behavior,

an area which has only begun to be studied along lines like

those that are suggested by Lancaster (1966). See Lee et al.

(2005).
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