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Abstract

Sensitivity of the returns to scale (RTS) classifications in data envelopment analysis is
studied by means of linear programming problems. The stability region for an observation
preserving its current RTS classification (constant, increasing or decreasing returns to scale)
can be easily investigated by the optimal values to a set of particular DEA-type formulations.
Necessary and sufficient conditions are determined for preserving the RTS classifications
when input or output data perturbations are non-proportional. It is shown that the sensitivity
analysis method under proportional data perturbations can also be used to estimate the RTS
classifications and discover the identical RTS regions yielded by the input-based and the
output-based DEA methods. Thus, our approach provides information on both the RTS
classifications and the stability of the classifications. This sensitivity analysis method can
easily be applied via existing DEA codes.
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1. Introduction

In their seminal paper, Charnes, Cooper and Rhodes (CCR, 1978) coined the term data
envelopment analysis (DEA) to describe a new methodology for estimating the relative
efficiencies and inefficiencies of decision making units (DMUs). One research issue which
has received widespread attention in the rapidly growing field of DEA is the characterization
of returns to scale (RTS).

Seiford and Zhu (1999) establish the equivalence of the following three methods for
characterizing RTS which have appeared in the literature. (See Golany and Yu (1997) and
Tone (1996) for additional discussion.)

Banker (1984) introduced the CCR RTS method using the sum of the intensity variables
in the CCR model to indicate RTS. Banker, Charnes and Cooper (BCC, 1984) developed
an alternative approach using the free variable in the BCC dual model. These two basic
RTS methods have been modified to deal with situations where DEA formulations have
multiple optimal solutions (Banker and Thrall (1992) and Zhu and Shen (1995)). Fi-
nally, Färe, Grosskopf and Lovell (1985, 1994) proposed a rather natural RTS approach
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by using scale efficiency. Their method exploits the natural nesting of the three RTS fron-
tiers that exhibit constant, nonincreasing and variable returns to scale (CRS, NIRS and
VRS).

While the sensitivity analysis of efficiency classifications in DEA has been extensively
studied (Seiford, (1994, 1996, 1997)), the issue of robustness of RTS estimation and classi-
fication appears to have been ignored. This is surprising since RTS classifications provide
important information for improving an individual DMU’s performance when scale inef-
ficiencies are detected. Furthermore since RTS estimates in DEA only hold locally, it is
important to investigate the stability of the RTS classifications.

The current paper addresses the sensitivity of RTS classifications in DEA. Since the three
existing RTS methods are equivalent (Seiford and Zhu, (1999), we utilize the CCR RTS
method, based upon the sum of the optimal lambda values in the CCR model, to address
the sensitivity issue in RTS estimation.

We develop several linear programming formulations for investigating the stability of RTS
classifications. The possible data perturbations for preserving the DMUs’ RTS classifications—
constant, increasing or decreasing returns to scale (CRS, IRS or DRS) are computed from
the optimal values.

A by-product of our RTS sensitivity analysis measure is an alternative method for char-
acterizing RTS. It is easily seen that the optimal values to the newly developed linear pro-
gramming problem can be used to identify the RTS classification. This new RTS method
requires information on the optimal basis set from the CCR model. The newly developed
measures yield information on both the RTS classifications and the stability of these RTS
classifications by solving two DEA-type formulations.

Note that the input-based and the output-based CCR models may produce different RTS
classifications. Therefore the sensitivity issue is addressed for the RTS results obtained
respectively from the two versions of CCR models. Nevertheless, note also that the two
CCR models do yield some identical RTS regions (see Seiford and Zhu, (1999). Our new
measures also can be used to discover these identical RTS regions.

The remainder of this paper is organized as follows. Section 2 discusses the basic DEA
models and the CCR RTS method. Section 3 develops the sensitivity analysis method for
the RTS estimation when the summation of lambda variables is always equal to one for
the CRS DMUs in all possible optimal solutions to the CCR model, and the CCR efficient
facets satisfy convexity. We examine the sensitivity issue under both the input-oriented and
the output oriented CCR RTS methods. Section 4 addresses RTS stability in the general
situation of no regularity conditions. Conclusions are given in section 5. Simple numerical
examples and a figure which illustrate the input oriented method of section 3 and the case
of multiple optimal lambda summations are provided in appendices A and B. Appendix C
applies the method to a real world data set.

2. Preliminaries

Suppose we have a set (J) of DMUs. EachDMUj ( j ∈ J), produces an amountyr j

(r = 1,2, . . . , s) of sdifferent outputs utilizing amountsxij (i = 1,2, . . . ,m) of mdifferent
inputs. In DEA, the CCR model evaluates the relative efficiency of a specificDMUo, o ∈ J,
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with respect to a set of CCR-frontier DMUs (belonging to sets E, E′ or F of Charnes, Cooper
and Thrall (1991)) definedEo = { j | λj > 0 for some optimal solutions forDMUo}.1

minθ

s.t.
∑

j∈Eo

λj xij ≤ θxio i = 1,2, . . . ,m;∑
j∈Eo

λj yrj ≥ yro r = 1,2, . . . , s;
λj ≥ 0 j ∈ Eo

(1)

Similarly we can write an output-oriented CCR model

maxϑ

s.t.
∑

j∈Eo

λj xij ≤ xio i = 1,2, . . . ,m;∑
j∈Eo

λj yrj ≥ ϑyro r = 1,2, . . . , s;
λj ≥ 0 j ∈ Eo

(2)

If Eo = J, then (1) is the original form of the input-oriented CCR model (see Charnes
et al. (1994) or Lewin and Seiford (1997) for details). TheDMUj ( j ∈ Eo) are called
CCR-efficient and form a specific CCR-efficient facet. TheseDMUj ( j ∈ Eo) appear in
optimal solutions whereλj > 0.

We can write the CCR model in form of (1) or (2) due to the fact thatλj = 0 for all
j /∈ Eo in the original CCR model when evaluatingDMUo.

Then on the basis of all optimal lambda solutions to (1) (or (2)), the CCR RTS method
can be expressed as (Banker and Thrall, (1992)):2

The RTS classification forDMUo is identified as CRSif and only if
∑

j∈Eo
λ∗j = 1 insome

optima, IRSif and only if
∑

j∈Eo
λ∗j < 1 inall optima, and DRSif and only if

∑
j∈Eo

λ∗j > 1
in all optima.

LEMMA 1 For a DMUo, if we haveλ∗(1)j ( j ∈ Eo) with
∑

j∈Eo
λ
∗(1)
j < 1 andλ∗(2)j ( j ∈ Eo)

with
∑

j∈Eo
λ
∗(2)
j > 1 in (1) (or (2)), then we must haveλ∗j ( j ∈ Eo) with

∑
j∈Eo

λ∗j = 1,
where (∗) represents optimal value.

Proof. Let
∑

j∈Eo
λ
∗(1)
j = d1, and

∑
j∈Eo

λ
∗(2)
j = d2. Define d = 1−d1

d2−d1
. Obviously

0< d < 1 and(1− d)d1+ dd2 = 1.
Let λ∗j = (1− d)λ∗(1)j + dλ∗(2)j ( j ∈ Eo). Then

∑
j∈Eo

λ∗j = 1 and∑
j∈Eo

λ∗j xi j ≤
∑
j∈Eo

[
(1− d)λ∗(1)j + dλ∗(2)j

]
xi j ≤ θ∗xio∑

j∈Eo

λ∗j yr j =
∑
j∈Eo

[
(1− d)λ∗(1)j + dλ∗(2)j

]
yr j ≥ (1− d)yro + dyro = yro

Thusλ∗j ( j ∈ Eo) with
∑

j∈Eo
λ∗j = 1 is an optimal solution.
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Remark 1. This lemma indicates that multiple optimal solutions with
∑

j∈Eo
λ
∗(1)
j < 1 and∑

j∈Eo
λ
∗(2)
j > 1 are only possible for CRS DMUs.

By the relationship between solutions to the output-based and the input-based CCR models
Seiford and Thrall, (1990), we have

LEMMA 2 Supposeλ∗j ( j ∈ Eo) and θ∗ is an optimal solution to (1). There exists a

corresponding optimal solutioñλ∗j ( j ∈ Eo) andϑ∗ to (2) such that̃λ∗j =
λ∗j
θ∗ andϑ∗ = 1

ϑ∗ ,

or equivalently,λ∗j =
λ̃∗j
ϑ∗ andϑ∗ = 1

θ∗ .

Note that a change in input levels forDMUo in (1) or a change of output levels in (2)
does not alter the RTS nature ofDMUo unless it is moved onto the CCR-efficient frontier.
Therefore we limit our investigation to the effect of output changes under (1) and the effect
of input changes under (2) on the RTS classification forDMUo.

Note also that CCR-efficient DMUs continue to exhibit CRS if they are still efficient after
data variations. Therefore we may use the sensitivity analysis procedure for the robustness
of efficient DMUs in Zhu (1996) and Seiford and Zhu (1998a, 1998b) to investigate the
stability of RTS estimation on CCR-efficient DMUs. Hence we only address the sensitivity
of RTS classifications for CCR-inefficient DMUs.

3. Sensitivity of the RTS Classification

From (1) and (2), we know that the robustness of the RTS estimate is relative to the CCR-
efficient DMUs andDMUo itself, and is not affected by the other DMUs. We suppose
that the CCR-efficient DMUs, i.e.,DMUj ( j ∈ Eo), are fixed and consider the movement
of DMUo.

Note that the different orientations of (1) and (2) may yield different RTS results for
DMUo. Therefore in the development to follow, we discuss the RTS sensitivity issue under
(1) and (2) respectively.

(3.A) Sensitivity of the RTS Classifications in Terms of (1)

Note that under (1), ifDMUo exhibits IRS, then decreases in outputs can not change its
IRS nature. Likewise, ifDMUo exhibits DRS, increases in outputs can not change its DRS
nature unlessDMUo reaches the CCR frontier. Therefore we only consider output increases
and decreases respectively for IRS and DRS DMUs.

Since the estimation of RTS in DEA usually considers the proportional change (increase
or decrease) in all the outputs ofDMUo achieved by a proportional change in all its inputs,
we consider proportional (radial) perturbations for all the outputs ofDMUo. Denote the
proportional increase byα ≥ 1 and the proportional decrease byβ ≤ 1, i.e.,DMUo may
increase or decrease its outputs respectively byα andβ up toαyro andβyro (r = 1,2, . . . , s)
and the RTS classification remains the same.
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In order to calculate the values ofα andβ, we first define the setTo for DMUj ( j ∈ Eo):

To =
{
(x, y):

∑
j∈Eo

λj xij ≤ xi , i = 1,2, . . . ,m;
∑
j∈Eo

λj yrj ≥ yr , r = 1,2, . . . , s;

∑
j∈Eo

λj = 1; λj ≥ 0, j ∈ Eo

}
Relative to this set, we can now define the following measure:

ϕ∗o = max{ϕo: (xo, ϕoyo) ∈ To} (3)

where (xo, yo) represent the input and output vector ofDMUo andϕ∗o can be calculated as
the solution to the linear programming problem:

ϕ∗o = maxϕo

s.t.
∑

j∈Eo

λj xi j ≤ xio i = 1,2, . . . ,m;∑
j∈Eo

λj yrj ≥ ϕoyro r = 1,2, . . . , s;∑
j∈Eo

λj = 1

λj ≥ 0 j ∈ Eo

The above formulation is similar to the output-based BCC model but the reference set is
restricted to the CCR-efficient DMUs. Four possible cases are associated with (3), that is,
ϕ∗o = 1,ϕ∗o < 1,ϕ∗o > 1 or (3) is infeasible.

LEMMA 3 If DMUo exhibits DRS, then (3) is feasible.

Proof. We introduce the new variables:

Letϕ̂o = θ̂ϕo = 1 soθ̂ = ϕ−1
o > 0

λ̂j = θ̂λj = ϕ−1
o λj ( j ∈ Eo)

Thus multiplying all constraints bŷθ in (3) gives

min θ̂

s.t.
∑

j∈Eo

λ̂j xij ≤ θ̂xio i = 1,2, . . . ,m;∑
j∈Eo

λ̂j yrj ≥ yro r = 1,2, . . . , s;∑
j∈Eo

λ̂j =
∑

j∈Eo

λjϕ
−1
o = ϕ−1

o = θ̂
λ̂j , λj ≥ 0 j ∈ Eo

(4)
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SinceDMUo exhibits DRS, then
∑

j∈Eo
λ∗j > 1 in (1). Let

∑
j∈Eo

λ∗j = θ̃ . Obviously,

θ̃ > θ is a feasible solution to (1). Thereforeλ∗j ( j ∈ Eo) andθ̃ are also a feasible solution
to (4). Therefore (3) is feasible.

From lemma 1 we know that if the following regularity condition is true, then RTS
classifications can be uniquely determined by

∑
j∈Eo

λ∗j in any optimal solution to (1)
(or (2)).

Regularity Condition (RC1).
∑

j∈Eo
λ∗j = 1 in all possible optimal solutions for the CRS

DMUs.

Note that multiple optimal solutions of lambda variables may occur even under RC1. We
also require the following regularity condition (RC2) on the convexity of the CCR efficient
facet. RC2 is closely related to the concept of “face regularity” of Thrall (1996).

Regularity Condition (RC2). SupposeEo forms an efficient facet. Then, any convex
combination of CCR efficient DMUs inEo is still on the same efficient facet.

THEOREM1 Suppose regularity conditions RC1 and RC2 hold. Then

(a) CRS prevail for DMUo if and only if ϕ∗o = 1;

(b) DRS prevail for DMUo if and only if ϕ∗o < 1;

(c) IRS prevail for DMUo if and only if ϕ∗o > 1 or (3) is infeasible.

Proof. Supposeϕ∗o = 1. SinceDMUj ( j ∈ Eo) exhibit CRS, by RC2,DMUo has an
optimal solution to (1) with

∑
j∈Eo

λ∗j = 1 andθ∗ = 1. ThereforeDMUo exhibits CRS.
Next, if DMUo = (xo, yo) exhibits CRS, thenDMUo (δ) = (δxo, yo) also exhibits CRS

under (1), whereθ∗ ≤ δ < +∞, andθ∗ is the optimal value to (1) when evaluatingDMUo.
Supposeϕ∗o 6= 1. Letλ∗j = ϕ∗oλj , whereλ∗j ( j ∈ Eo) is an optimal solution to (3) associated
with ϕ∗o. We have∑

j∈Eo

λj xij ≤ 1

ϕ∗o
xio i = 1,2, . . . ,m;∑

j∈Eo

λj yrj ≥ yro r = 1,2, . . . , s;∑
j∈Eo

λj = 1

ϕ∗o
< 1 j ∈ Eo.

If 1
ϕ∗o
≤ θ∗, then the optimality ofθ∗ is violated. If 1

ϕ∗o
> θ∗, then let 1

ϕ∗o
= δθ∗. Obviously,

1
ϕ∗o

is the optimal value to (1) when evaluating (δxo, yo), whereθ∗ ≤ δ < +∞. However,∑
j∈Eo

λj < 1 violating RC1. Thereforeϕ∗o = 1 must hold. This completes the proof of (a).
If ϕ∗o < 1, then the optimal value to (3) is equal to one forDMU′o = (xo, ϕ

∗
o yo). From

(a), we know that CRS prevail forDMU′o. ThusDMUo can not exhibit IRS. (We can not
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decrease the outputs and cause a IRS DMU to exhibit CRS). Therefore DRS prevail for
DMUo. This completes theif part of (b).

From lemma 3 and (a), we know that if (3) is infeasible, then IRS must prevail for DMUo.
If ϕ∗o > 1, then similar to the proof ofif part of (b),DMUo can not exhibit DRS. Therefore
IRS prevail forDMUo. This completes the proof ofif part of (c).

Theonly if part of (b) and (c) follows directly from the mutually exclusive and exhaustive
conditions specified in the theorem.

Remark 2. Under RC1, any proportion of output change in a CCR-inefficient DMU
exhibiting CRS will alter its RTS nature. Theonly if parts of (b) and (c) are true without
RC1. We see that ifϕ∗o < 1, thenDMUo will also be termed as having DRS by (2). Thus
(3) finds out the identical DRS regions under (1) and (2). Finally note that this theorem
gives an alternative approach for estimating the RTS.

THEOREM2 Suppose DMUo exhibits DRS. Ifϕ∗o < β ≤ 1 then the DRS classification still
holds for a proportional decrease of amountβ.

Proof. Suppose the outputs ofDMUo decrease tôβyro (r = 1,2, . . . , s) whereϕ∗o < β̂ ≤ 1.
If the RTS estimate is no longer held, then the RTS onDMUo will be CRS or IRS.

Consider the following linear programming problem:

ϕ̂∗o = maxϕ̂o

s.t.
∑

j∈Eo

λj xij ≤ xio i = 1,2, . . . ,m;∑
j∈Eo

λj yrj ≥ ϕ̂oβ̂yro r = 1,2, . . . , s;∑
j∈Eo

λj = 1

λj ≥ 0 j ∈ Eo

(5)

Obviously, (5) has a feasible solution ofλj ( j ∈ Eo) andϕ̂o = ϕ∗o
β̂

. Thus eitherϕ̂∗o = 1 or

ϕ̂∗o > 1 will violate the optimality ofϕ∗o. Therefore DRS still prevail onDMUo.

THEOREM3 Suppose DMUo exhibits IRS and (3) is feasible. If1 ≤ α < ϕ∗o then the IRS
classification continues to hold for an increase of amountα.

Proof. The proof is analogous with that of theorem 2 and is omitted.

Thus when (3) is feasible, the optimal value to (3) determines the maximum possible
output proportional change factors for IRS and DRS DMUs which preserve their RTS
classification.

If (3) is infeasible, then these IRS DMUs do not belong toTo. In this situation, we
consider the output-based CCR model (2) to determine the maximum perturbation.

THEOREM4 Suppose (3) is infeasible. Letα satisfy1 ≤ α < ϑ∗, whereϑ∗ is the optimal
value to (2) when evaluating DMUo. Then IRS continue to hold for DMUo for an increase
of amountα.
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Proof. Suppose the output ofDMUo is increased tôα, where 1≤ α̂ < ϑ∗, and the resulting
DMU exhibits CRS or DRS. Then we have an optimal solution,λ∗j ( j ∈ Eo) andθ∗ to (1)
such that∑

j∈Eo

λ∗j xij ≤ θ∗xio i = 1,2, . . . ,m;∑
j∈Eo

λ∗j yrj ≤ α̂yro r = 1,2, . . . , s;∑
j∈Eo

λ∗j ≥ 1 j ∈ Eo.

Obviously,λj = λ∗j∑
j∈Eo

λ∗j
andϕo = α̂∑

j∈Eo
λ∗j

is a feasible solution to (3) violating the

infeasibility of (3).

Remark 3. In this situation,DMUo is moved toward the CCR frontier. Theorem 4 indicates
that if (3) is infeasible then the input-based and output-based DEA techniques both classify
DMUo as IRS. Thus (3) is also an indicator of the identical IRS regions yielded by (1) and (2).

It can be seen that measure (3) not only analyzes the stability of the RTS classifications
but also gives the RTS classifications. i.e., both the RTS classification of a specific DMU
and its stability can be obtained from one model.

The above discussion only considers proportional output changes. In fact, we can easily
consider non-proportional changes. Note that ifDMUo exhibits DRS, thenϕ∗o < 1 in
(3). This implies that thisDMUo is BCC-extreme-efficient and in set E (the DMU group
Jo ⊆ J now consists ofDMUj ( j ∈ Eo) andDMUo). Therefore we may directly employ
the technique in Zhu (1996) and Seiford and Zhu (1998a, 1998b) to determine the possible
output decreasesβr ≤ 1 defined inŷro = βr yro (r = 1,2, . . . , s) which preserve the
DRS classification ofDMUo (see Charnes and Neralic (1990) for an alternate approach to
sensitivity analysis in DEA).

β∗k = maxβk

s.t.
∑

j∈Eo

λj xij ≤ xio i = 1,2, . . . ,m;∑
j∈Eo

λj ykj ≥ βkyko∑
j∈Eo

λj yrj ≥ yro r 6= k∑
j∈Eo

λj = 1

λj ≥ 0 j ∈ Eo

(6)

Obviouslyβ∗k ≤ 1 (k = r = 1,2, . . . s). Model (6) gives the possible maximum decrease
rate for each single output which allows DRS to prevail forDMUo.

THEOREM5 DRS continue to hold for DMUo with individual decreasesβr , if and only if
(β1, . . . , βs) ∈ 3, where3 = {(β1, . . . , βs) | β∗r < βr ≤ 1, r = 1, . . . , s and A1β1 +
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· · · + Asβs > 1} and the parameters Ar can be determined by the following system of
equations:


β∗1 A1+ A2+ · · · + As = 1

A1+ β∗2 A2+ · · · + As = 1

· · · · · · · · · · · · · · ·
A1+ A2+ · · · + β∗s As = 1

(7)

Proof. From theorem 1, we know that the DRS nature ofDMUo stays unchangedif and
only if DMUo is still BCC-extreme-efficient with reference toJo . Therefore the proof is
the same as that in Zhu (1996).

Now if DMUo exhibits IRS, then the above development of individual changes again
applies. If (3) is feasible, then we use (6) to calculate the maximum increase rate,αr ≥ 1
defined in ŷro = αr yro, for each single output to allowDMUo to exhibit IRS; if (3) is
infeasible, we use a (2)-like formulation, i.e., we delete the convexity constraint in (6).
That is,

α∗k = maxαk

s.t.
∑

j∈Eo

λj xij ≤ xio i = 1,2, . . . ,m;∑
j∈Eo

λj ykj ≥ αkyko∑
j∈Eo

λj yrj ≥ yro r 6= k

π1
∑

j∈Eo

λj = π2

λj ≥ 0 j ∈ Eo

(8)

If (3) is feasible, letπ1 = π2 = 1, i.e., (8) is identical to (6); if (3) is infeasible,
let π1 = π2 = 0, i.e., (8) is developed from (2). Obviously,α∗k ≥ 1 (k = r =
1,2, . . . , s).

THEOREM6 IRS continue to hold for DMUo if and only if (α1, . . . , αs) ∈ 3̃, where3̃ =
{(α1, . . . , αs) | 1≤ αr < α∗r , r = 1, . . . , s and A1α+· · ·+ Asαs < 1} and the parameters
of Ar can be determined by usingα∗r instead ofβ∗r (r = 1,2, . . . , s) in (7).

Proof. The proof is similar to that of theorem 5. But in this case,DMUo is moved toward
the boundary ofTo from the inside ofTo when (3) is feasible, or it is moved toward the
CCR frontier when (3) is infeasible.

Theorems 5 and 6 provide the necessary and sufficient conditions for preserving the RTS
classification ofDMUo.
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(3.B) Sensitivity of the RTS Classifications in Terms of (2)

We now consider input perturbations instead of output changes inDMUo. Note that un-
der (2), if DMUo exhibits DRS, then increases in inputs can not change its DRS nature.
Likewise, if DMUo exhibits IRS, decreases in inputs can not change its IRS nature unless
DMUo reaches the CCR frontier. Therefore we only consider input increases and decreases,
respectively, for IRS and DRS DMUs.

Suppose thatDMUo may proportionally increase and decrease its inputs, respectively, by
η ≥ 1 andξ ≤ 1, up toηxio andξxio (i = 1,2, . . . ,m) while its RTS classification still
holds.

In order to calculateη andξ , we define the following measure:

φ∗o = min{φo: (φoxo, yo) ∈ To} (9)

where (xo, yo) represents the input and output vector forDMUo andφ∗o can be calculated
as the solution to the linear programming problem:

φ∗o = minφo

s.t.
∑

j∈Eo

λj xij ≤ φoxio i = 1,2, . . . ,m;∑
j∈Eo

λj yrj ≥ yro r = 1,2, . . . , s;∑
j∈Eo

λj = 1

λj ≥ 0 j ∈ Eo

Note that the above model is the input-based BCC model ifEo = J. As for theorem 1,
four possible cases are associated with (9), that is,φ∗o = 1, φ∗o > 1, φ∗o < 1 or (9) is
infeasible, and one can obtain the following RTS characterization.

THEOREM7

(a) CRS prevail for DMUo if and only if φ∗o = 1;

(b) IRS prevail for DMUo if and only if φ∗o > 1;

(c) DRS prevail for DMUo if and only if φ∗o < 1 or (9) is infeasible.

Remark 4. Obviously, no input changes are allowed inDMUo if CRS prevail when RC1
holds. Theonly if parts of (b) and (c) are true without RC1. If (9) is infeasible, then DRS
must prevail onDMUo. If φ∗o > 1, thenDMUo will also be termed as having IRS by (1).
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I.e., (9) finds out the identical IRS regions generated by (1) and (2). This theorem also gives
an alternative RTS method under the output-based DEA technique.

Furthermore we have:

THEOREM8 Suppose DMUo exhibits IRS. For an input increase of amountη, where1 ≤
η < φ∗o then the IRS classification continues to hold.

THEOREM9 Suppose DMUo exhibits DRS and (9) is feasible. For an input decrease amount
of ξ , whereφ∗ < ξ ≤ 1, the DRS classification continues to hold.

Thus when (9) is feasible, the optimal value to (9) determines the maximum possible
input proportional change factors for IRS and DRS DMUs which preserve their RTS clas-
sifications.

If (9) is infeasible, then these DRS DMUs do not belong toTo. In this situation, we
consider the input-based CCR model (1).

THEOREM10 Suppose (9) is infeasible. For an input decrease amount ofξ , whereθ∗ <
ξ ≤ 1 then DRS still prevail for DMUo, whereθ∗ is the optimal value to (1) when evaluat-
ing DMUo.

Remark 5. This theorem indicates that if (9) is infeasible then the input-based and output-
based DEA techniques both declareDMUo as DRS. Thus (9) also indicates the identical
DRS regions yielded by (1) and (2).

From the above discussion, we see that measure (9) can also be used to estimate the RTS
classification forDMUo in addition to its role in sensitivity analysis.

We may also consider non-proportional changes in all of the inputs ofDMUo . Note that
if DMUo exhibits IRS, thenφ∗o > 1 in (9) indicating thatDMUo is BCC-extreme-efficient
with reference toJo. Therefore, we can employ the method in Zhu (1996) and Seiford
and Zhu (1998a, 1998b) to determine the stability region of IRS classification when all the
inputs increase non-proportionally. On the other hand, ifDMUo exhibits DRS, then either
φ∗o < 1 or θ∗ < 1. Therefore we can determine the possible input decrease region before
DMUo is moved onto the boundary ofTo. In fact, these developments are analogous with
those described in the output change case of (3.A), and we leave the details to the interested
readers.

4. General Situation

The previous developments assume that (1) and (2) have
∑

j∈Eo
λ∗j = 1 in all possible

optimal solutions for CRS DMUs. If this does not hold, then
∑

j∈Eo
λ∗j may also be either

greater or less than one for the CRS DMUs associated with different optimal basis sets.
Consequently,ϕ∗o in (3) (orφ∗o in (9)) may also be larger or smaller than one in the different
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optimal basis sets associated withEo. Therefore, some data perturbations in the CRS DMUs
can be allowed. In this section, we will further discuss the RTS sensitivity analysis without
requiring RC1 and RC2. Note that ifϕ∗o > 1 for DRS DMUs (orφ∗o < 1 for IRS DMUs),
then RC2 is violated.

(4.A) Stability of the RTS Classifications in Terms of (1)

SupposeDMUo exhibits CRS. On the basis ofEo, we define the following two linear
programming problems:

(τ ∗o )
−1 = min

∑
j∈Eo

λ̂j

s.t.
∑

j∈Eo

λ̂j xij ≤ θ∗xio i = 1,2, . . . ,m;∑
j∈Eo

λ̂j yrj ≥ yro r = 1,2, . . . , s;
λ̂j ≥ 0 j ∈ Eo

(10)

(σ ∗o )
−1 = max

∑
j∈Eo

λ̂j

s.t.
∑

j∈Eo

λ̂j xij ≤ θ∗xio i = 1,2, . . . ,m;∑
j∈Eo

λ̂j yrj ≥ yro r = 1,2, . . . , s;
λ̂j ≥ 0 j ∈ Eo

(11)

whereθ∗ is the optimal value to (1) when evaluatingDMUo .
SinceDMUo exhibits CRS, thereforeτ ∗o = (

∑
j∈Eo

λ̂∗j )
−1 ≥ 1 (σ ∗o = (

∑
j∈Eo

λ̂∗j )
−1 ≤ 1)

whereλ̂∗j (J ∈ Eo) represent optimal solutions to (10) ((11)). Obviouslyλ̂∗j ( j ∈ Eo) with∑
j∈Eo

λ̂∗j ≤ 1 (
∑

j∈Eo
λ̂∗j ≥ 1) is also an optimal solution to (1) ((2)).

THEOREM11 Suppose DMUo exhibits CRS. Ifχ ∈ RCRS = {χ : min{1, σ ∗o } ≤ χ ≤
max{1, τ ∗o }}. Then the CRS classification continues to hold, whereχ represents a propor-
tional change of all outputs,̂yro = χyro (r = 1,2, . . . , s) and,τ ∗o andσ ∗o are defined in
(10) and (11) respectively.

Proof. By Thrall and Banker (1992), we know that (θ∗τ ∗o xo, τ
∗
o yo) and (θ∗σ ∗o xo, σ

∗
o yo) both

exhibit CRS. Consequently, (xo, τ
∗
o yo) and (xo, σ

∗
o yo) exhibit CRS. Therefore if min{1, σ ∗o } ≤

χ ≤ max{1, τ ∗o }, thenDMUo (= xo, χyo) still exhibits CRS.

Remark 6. If
∑

j∈Eo
λj ≥ 1 for all alternate optima to (1), thenσ ∗o = ϕ∗ = 1 and no

proportional output increase is allowed. If
∑

j∈Eo
λj ≤ 1 for all alternate optima to (1), then

τ ∗o = 1 and no proportional output decrease is allowed. If
∑

j∈Eo
λj can be equal to, larger

than, or less than one, then both proportional increases and decreases of output are possible.
(See the example in Appendix B.) If RC2 holds, thenRCRS = {χ : min{1, σ ∗o } ≤ χ ≤
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max{1, τ ∗o , ϕ∗o}. Furthermore, if only RC1 is violated, theorem 1 (a) should be modified to
read: CRS prevail forDMUo if and only if there exist someEo such thatϕ∗ = 1 in (3).

Next we discuss the RTS sensitivity analysis for IRS DMUs. IfDMUo exhibits IRS, then∑
j∈Eo

λj < 1 in all optimal solutions to (1). Thusσ ∗o > 1 in (11).

THEOREM12 Suppose DMUo exhibits IRS. The IRS classification continues to hold for
α ∈ RI RS= {α: 1≤ α < σ ∗o }, whereα represents the proportional increase of all outputs,
ŷro = αyro (r = 1,2, . . . , s) andσ ∗o is defined in (11)

Proof. SupposeDMU′o = (xo, α yo) andDMU′o exhibits CRS or DRS. ThenDMU′′o =
(α θ∗xo, α yo), must also exhibit CRS or DRS. Furthermore, we have

∑
j∈Eo

λ∗j xij ≤ γ ∗αθ∗xio ≤ αθ∗xio I = 1,2, . . . ,m;∑
j∈Eo

λ∗j yrj ≤ αyro r = 1,2, . . . , s;∑
j∈Eo

λ∗j ≥ 1 j ∈ Eo.

whereγ ∗ is the optimal value to (1) when evaluatingDMU′′o . Obviously,
λ∗j
α

( j ∈ Eo) is a

feasible solution to (11).Thus

∑
j∈Eo

λ∗j
α
≥ 1

α
> 1

σ ∗o
violating the optimality of (11).

From the proof of theorem 4, we know that theorem 4 holds in the absence of RC1 and
RC2. Therefore if (3) is infeasible forDMUo, then the RTS stability region isRIRS =
{α: 1≤ α < max{ϑ∗, σ ∗o }}, whereϑ∗ is the optimal value to (2).

Finally, we consider the DRS DMUs.

LEMMA 4 If DMUo exhibits DRS in (1), then DMUo must exhibit DRS in (2).

Proof. SupposeDMUo exhibits CRS or IRS in (2). Then by lemma 2, we have
∑

j∈Eo
λ∗j ≤

θ∗ ≤ 1, whereλ∗j ( j ∈ Eo) andθ∗ is an optimal solution to (1). SinceDMUo exhibits DRS
in (1), therefore

∑
j∈Eo

λ∗j > 1 in all alternative optimal solutions to (1). Thusθ∗ > 1, a
contradiction.

The following lemma is obvious. Note thatϕo does not necessarily represent the optimal
value to (3).

LEMMA 5 If CRS prevail for DMUo, then there exists some Eo such thatϕo = 1 in (3).

THEOREM13 Suppose DMUo exhibits DRS andϕ∗o < 1. Then the DRS classification
continues to hold forϕ∗o < β ≤ 1, whereβ represents the proportional change of all
outputs,ŷro = βyro (r = 1,2, . . . , s) andϕ∗o is the optimal value to (3).
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Proof. By lemma 4,DMUo exhibits DRS under (2). Next, letDMU′o = (xo, βyo). Then
DMU′o still exhibits DRS under (2). Thus

∑
j∈Eo

λ∗j ≤ xio i = 1,2, . . . ,m;∑
j∈Eo

λ∗j yrj ≤ ϑ∗βyro r = 1,2, . . . , s;∑
j∈Eo

λ∗j > 1 j ∈ Eo.

whereϑ∗ is the optimal value to (2) when evaluatingDMU′o.

If DMU′o exhibits IRS in (1), then, by lemma 2,

∑
j∈Eo

λ∗j
ϑ∗ < 1. Thusϕo = ϑ∗β∑

j∈Eo
λ∗j
> ϕ∗o

is a feasible solution to (3) which violates the optimality ofϕ∗o.
If DMU′o exhibits CRS, then, by lemma 5, we haveϕo = 1 when calculating (3) for

DMU′o. Thusβ > ϕ∗o which violates the optimality ofϕ∗o.

However, one may also use the optimal value to (10),τ ∗o < 1, to determine the stability
region, particularly in the case ofϕ∗o > 1 for a DRSDMUo. This is characterized by the
following theorem.

THEOREM14 Suppose DMUo exhibits DRS. Then the DRS classification continues to hold
for β ∈ RDRS = {β: τ ∗o < β ≤ 1}, whereβ represents the proportional change of all
outputs,ŷro = βyro (r = 1,2, . . . ,m) andτ ∗o is defined in (10).3

Proof. The proof is analogous with that of theorem 12 and is omitted.

Finally, we can useτ ∗o andσ ∗o to estimate the RTS classifications.

THEOREM15

(a) CRS prevail for DMUo if and only if σ ∗o ≤ 1≤ τ ∗o ;

(b) DRS prevail for DMUo if and only if τ ∗o < 1;

(c) IRS prevail for DMUo if and only if σ ∗o > 1.

Proof. Theonly if parts of (b) and (c) are obvious. Next, ifτ ∗o < 1, then
∑

j∈Eo
λ̂∗j > 1,

where
∑

j∈Eo
λ̂∗j is the optimal value to (10). This indicates that

∑
j∈Eo

λ∗j > 1 in all
alternative optimal solutions to (1). Thus DRS prevail forDMUo. This completes the proof
of the if part of (b). The proof of theif part of (c) is similar. Theif and theonly if parts of
(a) follow directly.
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(4.B) Stability of the RTS Classifications in Terms of (2)

Consider the following two linear programming models:

(τ̃ ∗o )
−1 = min

∑
j∈Eo

λ̃j

s.t.
∑

j∈Eo

λ̃j xij ≤ xio i = 1,2, . . . ,m;∑
j∈Eo

λ̃j yrj ≥ ϑ∗yro r = 1,2, . . . , s;
λ̃j ≥ 0 j ∈ Eo.

(12)

(σ̃ ∗o )
−1 = max

∑
j∈Eo

λ̃j

s.t.
∑

j∈Eo

λ̃j xij ≤ xio i = 1,2, . . . ,m;∑
j∈Eo

λ̃j yrj ≥ ϑ∗yro r = 1,2, . . . , s;
λ̃j ≥ 0 j ∈ Eo.

(13)

whereϑ∗ is the optimal value to (2) when evaluatingDMUo.
SupposeDMUo exhibits CRS. Then

∑
j∈Eo

λ̃∗j ≤ 1 in (12) and
∑

j∈Eo
λ̃∗j ≥ 1 in (13), i.e.,

τ̃ ∗o ≥ 1 andσ̃ ∗o ≤ 1 respectively. Similar to theorem 11, we obtain the following.

THEOREM16 Suppose DMUo exhibits CRS. Ifγ ∈ RCRS = {γ : min{1, σ ∗o } ≤ χ ≤
max{1, τ ∗o }}. Then the CRS classification continues to hold, whereγ represents the pro-
portional change of all inputs,̂xio = γ xio (i = 1,2, . . . ,m) andτ̃ ∗o and σ̃ ∗o are defined in
(12) and (13) respectively.

Remarks. If
∑

j∈Eo
λj ≥ 1 in all alternate optima to (2), theñσ ∗ = 1 and no proportional

input increase is allowed. If
∑

j∈Eo
λj ≤ 1 in all alternate optima to (2), theñτ ∗o = 1 and

φ∗ = 1 and no proportional input decrease is allowed. If
∑

j∈Eo
λj can be equal to, larger

than, or less than one, then both proportional input increase and decrease are possible. In
this situation,Eo in (9) is identified by the different optimal basis sets associated with non-
zero lambdas in (2). If RC2 holds, thenRCRS= {γ : min{1, σ ∗o , φ∗o} ≤ χ ≤ max{1, τ ∗o }}.
Furthermore, if only RC1 is violated, theorem 8 (a) should be modified to read: CRS prevail
for DMUo if and only if there exists aEo such thatφ∗ = 1 in (9).

If DMUo exhibits DRS, then
∑

j∈eo
λ̃∗j > 1, i.e.,τ̃ ∗ < 1 in (12) and similar to theorem 12,

we obtain

THEOREM17 Suppose DMUo exhibits DRS. The DRS classification continues to hold for
ξ ∈ RDRS = {ξ : τ̃ ∗o < ξ ≤ 1}, whereξ represents the proportional decrease of all inputs,
x̂io = ξxio (i = 1,2, . . . ,m) andτ̃ ∗o is defined in (12).

Theorem 10 holds for the situation without RC1 and RC2. Therefore if (9) is infeasible,
then the RTS stability region isRDRS= {ξ : min{θ∗, τ̃ ∗o } < ξ ≤ 1}, whereθ∗ is the optimal
value to (1) when evaluatingDMUo.
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For IRS DMUs, we have

THEOREM18 Suppose DMUo exhibits IRS andφ∗o > 1. Then the IRS classification con-
tinues to hold for1 ≤ η < φ∗o, whereη represents the proportional change of all inputs,
x̂io = ηxio (i = 1,2, . . . ,m) andφ∗o is the optimal value to (9).

However, one may also use the optimal value to (10),τ ∗o > 1, to determine the IRS
stability region, particularly in the case ofϕ∗o > 1 for DMUo. This is characterized by the
following theorem.

THEOREM19 Suppose DMUo exhibits IRS. Then the IRS classification continues to hold
for η ∈ RIRS = {η: 1≤ η < σ̃ ∗o }, whereη represents the proportional change of all inputs,
x̂io = ηxio (i = 1,2, . . . ,m) andσ̃ ∗o is defined in (13).

5. Concluding Remarks

The estimation of RTS in DEA provides important information on scale efficiency and
on improving the performance of DMUs. One would like to determine the movement of
CCR-inefficient DMUs onto the frontier in improving directions. Therefore, the sensitivity
of the RTS classifications is extremely important for empirical applications.

The current paper develops linear programming techniques for studying the sensitivity of
RTS estimation obtained from the input-based and output-based DEA methods respectively.
The only information needed is the optimal basis set (or facet DMUs) obtained from eval-
uating a specificDMUo by the original CCR model. The sensitivity analysis method can
easily be applied to real world data sets via existing DEA codes. The sensitivity analysis
approach is developed for handling situations when output perturbations occur inDMUo

under the input-based DEA model and input perturbations under the output-based DEA
model.

In addition, our sensitivity analysis approach also gives an alternative method to classify
RTS for each DMU, and it can be employed to identify the identical RTS regions obtained
from input-based and output-based DEA models respectively. In particular, if the CCR
model yields the unique optimal lambda solution, the summation of the lambda variables
can be directly used to define the lower or upper boundary for the RTS stability regions.

In the current study, we only consider data perturbations for CCR inefficient DMUs. Note
that the movement of CCR efficient DMUs may also change the RTS classification. By the
ray unboundedness assumption of the CCR model, the effect on the RTS classification by
the movement of CCR efficient DMUs along the frontier is straightforward. However, one
possible future research subject would be to examine situations where both CCR efficient
DMUs and CCR inefficient DMUs were perturbed.

Appendix A

We provide a simple numerical example which illustrates the sensitivity analysis of RTS
results obtained from the input-based RTS method. An artificial set of data, containing 6
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Figure A.Stability of the RTS.

Table A-1.Sample data set.

DMU 1 2 3 4 5 6

input (xj ) 1.5 2 2.5 5 6 4

output (yj ) 3.5 6 7 10 6 4

DMUs with a single output and a single input, was generated. Raw data are provided in
Table A.1. Figure A displays the setTo used in measure (3).

From Figure A, we know that DMU2 is CCR-efficient. DMU5 exhibits CRS, DMUs 1
and 6 exhibit IRS, and DMUs 3 and 4 exhibit DRS. Table 2 provides the sensitivity results
of the RTS estimation on DMUs 1, 3, 4, 5 and 6 when the output is changed.
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Table A-2.RTS sensitivity results.

DMU 1 3 4 5 6

Sensitivity ϑ∗ = 9/7# ϕ∗o = 6/7 ϕ∗o = 3/5 ϕ∗o = 1 ϕ∗o3/2

Result α ∈ [1,9/7) β ∈ (6/7,1] β ∈ (3/5,1] α = β = 1 α ∈ [1,3/2)

# (3) (or (A.1)) is infeasible for DMU1.

For this data set,Eo = {DMU2}. Thus (3) can be written as

ϕ∗o = minϕo

s.t. 2λ ≤ xo

6λ ≥ ϕoyo

λ = 1.

(A.1)

where (xo, yo) represents one of DMUs 1, 3, 4, 5 and 6.
DMUs 3 and 4 exhibit DRS, so we haveϕ∗o < 1. The value ofϕ∗o gives the maximum

distance from DMU3 or DMU4 to the boundary (GB) ofTo. For instance, in DMU4,
ϕ∗o = AB

AC = y2

y4
< 1. The two DMUs can not be moved intoTo or onto the boundary ofTo

and still maintain the DRS classification. For example, if the proportional output decrease
is in the interval of(3/5,1], then DMU4 still exhibits DRS, otherwise CRS and then finally
IRS will prevail.

Although both DMUs 1 and 6 exhibit IRS, (A.1) is infeasible for DMU1. Thus, we
calculate the output-based CCR model (2) and obtainϑ∗ = 9/7 where point D is the
referent DMU. This means that the output of DMU1 must be greater than 9/2 before CRS
hold for DMU1. In fact DMU1 will move onto the CCR frontier (the ray OD in Figure A).
Note that DMU1 /∈ To and both (1) and (2) give the same RTS estimation of IRS. Since
DMU6 belongs toTo, we have the optimal value ofϕ∗o = E F

FG = y2

y6
= 3

2 which means
that if the output increase factor is less than 3/2, then the current RTS classification (IRS)
will continue to hold. Geometrically DMU6 can not be moved outside ofTo under output
increases by more than 3/2.

In addition, note thatϕ∗o = 1 for DMU5 where CRS prevail. This means that any change
in output will cause DMU5 to leave the boundary ofTo.

Appendix B

Consider an example taken from Zhu and Shen (1995) with m= 2, s= 1, n= 4 andx1 j

x2 j

yj

 =
0.1 2 40 3

0.25 2 10 2
0.1 1 10 1


DMUs 1, 2 and 3 are CCR-efficient and are on the same efficient facet given byx1+2x2 =
6y. Obviously, RC2 is satisfied. DMU4 is inefficient withθ∗ = 6/7. We obtain
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Table C-1.RTS Stability regions for the Chinese cities.

Cities RTS Eo ϕ∗o τ ∗o , σ ∗o Stability Region

2 DRS 6, 8, 21 0.46955 0.36258 (0.36258, 1]
3 DRS 1, 21, 24 1.31533 0.50761 (0.50761, 1]
4 DRS 8, 21, 24, 26 0.85771 0.70771 (0.70771, 1]
5 DRS 8, 24, 26 0.79834 0.62305 (0.62305, 1]
7 IRS 6, 8, 21, 26 1.48776 1.20627 [1, 1.20627)
9 IRS 1, 8, 21 1.37427 1.20627 [1, 1.20627)

10 IRS 6, 8, 21 1.59622 1.51057 [1, 1.51057)
11 IRS 6, 8, 21, 26 1.24228 1.06838 [1, 1.06838)
12 IRS 6, 8, 26 1.21293 1.03842 [1, 1.03842)
13 IRS 1, 8, 21 1.97062 2.88184 [1, 2.88184)
14 IRS 1, 8, 21 1.30574 1.16279 [1, 1.16279)
15 IRS 8, 21, 24, 26 1.12570 1.06045 [1, 1.06045)
16 IRS 1, 8, 21 infeasible

1.67410 2.95858 [1, 2.95858)
17 IRS 6, 8, 21, 26 1.55605 1.76367 [1, 1.76367)
18 IRS 8, 21, 26 infeasible

1.49087 1.70940 [1, 1.70940)
19 IRS 1, 8, 24 1.47641 1.42045 [1, 1.42045)
20 IRS 6, 8, 21 infeasible

1.76204 2.34192 [1, 2.34192)
22 IRS 1, 8, 21 1.20103 1.14416 [1, 1.14416)
27 IRS 1, 25 infeasible

1.86654 7.75194 [1, 7.75194)
28 IRS 6, 8, 26 1.36882 1.34590 [1, 1.34590)

Eo = {DMU1,DMU2,DMU3} whereDMU2 = 2
3DMU1+ 1

30DMU3 is in set E′. Mul-
tiple optimal lambda solutions are detected in evaluating DMU4 using (1) (see Zhu and
Shen, 1995).

First calculate (3), that is

ϕ∗o = maxϕo

s.t. 0.1 λ1+ 2λ2+ 40λ3 ≤ 3

0.25λ1+ 2λ2+ 10λ3 ≤ 2

0.1 λ1+ λ2+ 10λ3 ≥ ϕo

λ1+ λ2+ λ3 = 1
λ1, λ2, λ3 ≥ 0

The optimal value is ϕ∗o = 7/6. Next calculate (10), that is

(τ ∗o )
−1 = minλ1+ λ2+ λ3

s.t. 0.1 λ1+ 2λ2+ 40λ3 ≤ 3× 6
7 = 18

7

0.25λ1+ 2λ2+ 10λ3 ≤ 2× 6
7 = 12

7

0.1 λ1+ λ2+ 10λ3 ≥ 1
λ1, λ2, λ3 ≥ 0

We haveτ ∗o = 210
1011 with λ∗1 = 100

21 , λ∗2 = 0 andλ∗3 = 11
210.

Finally, calculate (11). We haveσ ∗o = 70
52 with λ∗1 = 0, λ∗2 = 5

7 andλ∗3 = 2
70.

Therefore the stability region for the CRS classification is
{
χ : 210

1011 ≤ χ ≤ 70
52

}
.
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Appendix C

We illustrate the RTS sensitivity analysis method on a real world data set consisting of
28 Chinese cities (DMUs) in 1983 from Charnes, Cooper and Li (1989). There are three
outputs (gross industrial output value, profit & taxes, and retail sales) and three inputs (labor,
working funds, and investment).

Table C.1 reports the results for the 20 inefficient cities. Column 1 gives the DMU
numbers which are the same as in Charnes, Cooper and Li (1989). RTS classifications and
Eo are reported respectively in columns 2 and 3. Column 4 gives the optimal value to (3),
ϕ∗o, or the optimal value to (2),ϑ∗o when (3) is infeasible.τ ∗o orσ ∗o are reported in column 5.
The RTS stability regions are reported in the last column.

Two efficient DMUs, namely, DMU23 and DMU28, do not appear inEo when evaluating
other inefficient DMUs. It is easy to see that this data set satisfies RC1, but violates RC2,
becauseϕ∗o > 1 for DMU2.

Notes

1. The set ofDMUj ( j ∈ Eo) may be different for each differentDMUo under evaluation. Furthermore,Eo ⊂ BIo
for input-orientation (orBOo for output-orientation) of Seiford and Thrall (1990, p.19) andEo is related to
the Primal Representation Theorem of Charnes, Cooper and Thrall (1991, p. 215) in which a CCR referent
group is determined via a strong complementary slackness condition (SCSC) solution. Also, DMUs inEo

may not form an efficient facet (see Thrall, (1996)).

2. We consider the RTS of BCC non-frontier DMUs by their BCC projections.

3. Note thatϕo = τ ∗o < 1 is a feasible solution to (3). Thereforeϕ∗o ≥ τ ∗o .

References

Banker, R. D. (1984). “Estimating Most Productive Scale Size Using Data Envelopment Analysis,”European
Journal of Operational Research17, 35–44.

Banker, R. D., A. Charnes, and W. W. Cooper. (1984). “Some Models for the Estimation of Technical and Scale
Inefficiencies in Data Envelopment Analysis,”Management Science30, 1078–1092.

Banker R. D. and R. M. Thrall. (1992). “Estimation of Returns to Scale Using Data Envelopment Analysis,”
European Journal of Operational Research62, 74–84.

Charnes, A., W. W. Cooper, and E. Rhodes. (1978). “Measuring the Efficiency of Decision Making Units,”
European Journal of Operational Research2, 429–441.

Charnes, A., W. W. Cooper, and S. Li. (1989). “Using DEA to Evaluate Relative Efficiencies in the Economic
Performance of Chinese Key Cities,”Socio-Economic Planning Sciences23, 325–344.

Charnes, A., W. W. Cooper, and R. M. Thrall. (1991). “A Structure for Classifying and Characterizing Efficiency
and Inefficiency in Data Envelopment Analysis,”Journal of Productivity Analysis2, 197–237.

Charnes, A., W. W. Cooper, A. Lewin, and L. M. Seiford. (1994).Data Envelopment Analysis: Theory, Method-
ology and Applications. Boston: Kluwer Academic Publishers.

Charnes, A. and L. Neralic. (1990). “Sensitivity Analysis of the Additive Model in Data Envelopment Analysis,”
European Journal of Operational Research48, 332–341.
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