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Abstract

Sensitivity of the returns to scale (RTS) classifications in data envelopment analysis is
studied by means of linear programming problems. The stability region for an observation
preserving its current RTS classification (constant, increasing or decreasing returns to scale)
can be easily investigated by the optimal values to a set of particular DEA-type formulations.
Necessary and sufficient conditions are determined for preserving the RTS classifications
when input or output data perturbations are non-proportional. Itis shown that the sensitivity
analysis method under proportional data perturbations can also be used to estimate the RTS
classifications and discover the identical RTS regions yielded by the input-based and the
output-based DEA methods. Thus, our approach provides information on both the RTS
classifications and the stability of the classifications. This sensitivity analysis method can
easily be applied via existing DEA codes.
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1. Introduction

In their seminal paper, Charnes, Cooper and Rhodes (CCR, 1978) coined the term data
envelopment analysis (DEA) to describe a new methodology for estimating the relative
efficiencies and inefficiencies of decision making units (DMUs). One research issue which
has received widespread attention in the rapidly growing field of DEA is the characterization
of returns to scale (RTS).

Seiford and Zhu (1999) establish the equivalence of the following three methods for
characterizing RTS which have appeared in the literature. (See Golany and Yu (1997) and
Tone (1996) for additional discussion.)

Banker (1984) introduced the CCR RTS method using the sum of the intensity variables
in the CCR model to indicate RTS. Banker, Charnes and Cooper (BCC, 1984) developed
an alternative approach using the free variable in the BCC dual model. These two basic
RTS methods have been modified to deal with situations where DEA formulations have
multiple optimal solutions (Banker and Thrall (1992) and Zhu and Shen (1995)). Fi-
nally, Fare, Grosskopf and Lovell (1985, 1994) proposed a rather natural RTS approach
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by using scale efficiency. Their method exploits the natural nesting of the three RTS fron-
tiers that exhibit constant, nonincreasing and variable returns to scale (CRS, NIRS and
VRS).

While the sensitivity analysis of efficiency classifications in DEA has been extensively
studied (Seiford, (1994, 1996, 1997)), the issue of robustness of RTS estimation and classi-
fication appears to have been ignored. This is surprising since RTS classifications provide
important information for improving an individual DMU’s performance when scale inef-
ficiencies are detected. Furthermore since RTS estimates in DEA only hold locally, it is
important to investigate the stability of the RTS classifications.

The current paper addresses the sensitivity of RTS classifications in DEA. Since the three
existing RTS methods are equivalent (Seiford and Zhu, (1999), we utilize the CCR RTS
method, based upon the sum of the optimal lambda values in the CCR model, to address
the sensitivity issue in RTS estimation.

We develop several linear programming formulations for investigating the stability of RTS
classifications. The possible data perturbations for preserving the DMUs’ RTS classifications—
constant, increasing or decreasing returns to scale (CRS, IRS or DRS) are computed from
the optimal values.

A by-product of our RTS sensitivity analysis measure is an alternative method for char-
acterizing RTS. It is easily seen that the optimal values to the newly developed linear pro-
gramming problem can be used to identify the RTS classification. This new RTS method
requires information on the optimal basis set from the CCR model. The newly developed
measures Yyield information on both the RTS classifications and the stability of these RTS
classifications by solving two DEA-type formulations.

Note that the input-based and the output-based CCR models may produce different RTS
classifications. Therefore the sensitivity issue is addressed for the RTS results obtained
respectively from the two versions of CCR models. Nevertheless, note also that the two
CCR models do yield some identical RTS regions (see Seiford and Zhu, (1999). Our new
measures also can be used to discover these identical RTS regions.

The remainder of this paper is organized as follows. Section 2 discusses the basic DEA
models and the CCR RTS method. Section 3 develops the sensitivity analysis method for
the RTS estimation when the summation of lambda variables is always equal to one for
the CRS DMUs in all possible optimal solutions to the CCR model, and the CCR efficient
facets satisfy convexity. We examine the sensitivity issue under both the input-oriented and
the output oriented CCR RTS methods. Section 4 addresses RTS stability in the general
situation of no regularity conditions. Conclusions are given in section 5. Simple numerical
examples and a figure which illustrate the input oriented method of section 3 and the case
of multiple optimal lambda summations are provided in appendices A and B. Appendix C
applies the method to a real world data set.

2. Preliminaries

Suppose we have a set)(of DMUs. EachDMU; (j € J), produces an amoury;
(r=1,2,...,s)ofsdifferent outputs utilizing amounts (i = 1, 2, ..., m) of mdifferent
inputs. In DEA, the CCR model evaluates the relative efficiency of a sp&dfid,, 0 € J,
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with respect to a set of CCR-frontier DMUs (belonging to sets'iBr E of Charnes, Cooper
and Thrall (1991)) define@, = {j | A; > O for some optimal solutions foD MU,}.2

miné@
S.t. Z AjXij < OXig i=12....,m
jeEo (1)
D AVi=Yo '=12....5
j€Eo

Similarly we can write an output-oriented CCR model

maxdv
s.t. Z)\jxijfxio =12 ...,m
jeEo (2)
Z)\jyrjiﬂyro r=212...,s
jeEo
A =0 j € Eo

If Eq = J, then (1) is the original form of the input-oriented CCR model (see Charnes
et al. (1994) or Lewin and Seiford (1997) for details). ThMU; (j € E,) are called
CCR-efficient and form a specific CCR-efficient facet. ThB$8U; (j € Eo) appear in
optimal solutions wherg; > 0.

We can write the CCR model in form of (1) or (2) due to the fact that= 0 for all
j ¢ Eg inthe original CCR model when evaluatibiVU,.

Then on the basis of all optimal lambda solutions to (1) (or (2)), the CCR RTS method
can be expressed as (Banker and Thrall, (1992)):

The RTS classification fddDMU, is identified as CR8and only if } |, ¢ A = 1linsome
optima, IRSfandonlyif }; ¢ A" < linall optima, and DR¥andonlyif) ;g A] > 1
in all optima.

LEMMA 1 Fora DMU,, if we havel" ™ (j € Eo) with 3" ¢ 47 < 1andA/® (j € Eo)
with 3, e 47 > 1in (1) (or (2), then we must have (j € Eo) with 3", ¢ ¥ = 1,
where ) represents optimal value.
Proof. Let Y, ¢ A7 = dy, and Y, ¢ A/® = dp. Defined = F=%. Obviously
0<d<1land(l—dd +dd, =1.

Letar = (1— d)a Y +da® (j € Eo). Then) ;¢ AF = 1and

Z )»}kXij < Z [(1 - d))»;ﬁ(l) + d)»}k(z)] Xij < 0" Xio

jeEo jeEo
Z )L}kyfi = Z [(1 B d)AT(l) + dAT(Z)] Yrj = 1- d)yro + dYro = Yro
j€Eo jeEo

Thush? (j € Eo) with 3 ;¢ Al = 1is an optimal solution. ]
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#(1)

] <1land

Remark 1. This lemma indicates that multiple optimal solutions V@?GEO A
Yjee, A® > 1 are only possible for CRS DMUs.

By the relationship between solutions to the output-based and the input-based CCR models
Seiford and Thrall, (1990), we have

LEMMA 2 Suppose.S (j € Eo) and 0* is an optimal solution to (1). There exists a

corresponding optimal solutiohj‘ (j € Ep) andv* to (2) such thali}k = g—’ and9* = 0—1*,

. ar
or equivalently)® = <L andy* = .

Note that a change in input levels fBiMU, in (1) or a change of output levels in (2)
does not alter the RTS naturel@MU, unless it is moved onto the CCR-efficient frontier.
Therefore we limit our investigation to the effect of output changes under (1) and the effect
of input changes under (2) on the RTS classificatiorivtU,,.

Note also that CCR-efficient DMUs continue to exhibit CRS if they are still efficient after
data variations. Therefore we may use the sensitivity analysis procedure for the robustness
of efficient DMUs in Zhu (1996) and Seiford and Zhu (1998a, 1998b) to investigate the
stability of RTS estimation on CCR-efficient DMUs. Hence we only address the sensitivity
of RTS classifications for CCR-inefficient DMUs.

3. Sensitivity of the RTS Classification

From (1) and (2), we know that the robustness of the RTS estimate is relative to the CCR-
efficient DMUs andDMU, itself, and is not affected by the other DMUs. We suppose
that the CCR-efficient DMUs, i.eDMU; (j € Eo), are fixed and consider the movement
of DMU,.

Note that the different orientations of (1) and (2) may vyield different RTS results for
DMU,. Therefore in the development to follow, we discuss the RTS sensitivity issue under
(1) and (2) respectively.

(3.A) Sensitivity of the RTS Classifications in Terms of (1)

Note that under (1), iDMU, exhibits IRS, then decreases in outputs can not change its
IRS nature. Likewise, iDMU, exhibits DRS, increases in outputs can not change its DRS
nature unlesBMU, reaches the CCR frontier. Therefore we only consider outputincreases
and decreases respectively for IRS and DRS DMUs.

Since the estimation of RTS in DEA usually considers the proportional change (increase
or decrease) in all the outputs@MU, achieved by a proportional change in all its inputs,
we consider proportional (radial) perturbations for all the output®Mt),. Denote the
proportional increase by > 1 and the proportional decrease py< 1, i.e.,DMU, may
increase or decrease its outputs respectively&iyds up toayro, andgyi, r = 1,2,...,9)
and the RTS classification remains the same.
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In order to calculate the values @fandg, we first define the séf, for DMU; (j € Eo):

To= { XY D onX <x.i=12....m
j€Eo
ijy”- >y, r=212...,s
jeEo
Z)\.j =1 A >0, ek
j€Eo

Relative to this set, we can now define the following measure:

@y = MaxX{go: (Xo, PoYo) € To}

3)
where Ko, Yo) represent the input and output vectoi¥iU, andg} can be calculated as
the solution to the linear programming problem:

¥y = MaXgo

s.t. Z)\jxijfxio i=212...,m
j€Eo
Z)‘jyrjz(poyro r=172a"'7s;
jeEo
j€Eo

The above formulation is similar to the output-based BCC model but the reference set is
restricted to the CCR-efficient DMUs. Four possible cases are associated with (3), that is,

i =1,9% < 1,¢% > Lor (3)is infeasible.
LEMMA 3 If DMU, exhibits DRS, then (3) is feasible.

Proof. We introduce the new variables:
Letgo = Opo=18500 = @5 >0
o= 00 =93 (j € Eo)

Thus multiplying all constraints b§ in (3) gives

miné
s.t. Zijxijgéxio i=212,...,m
jeEo
ZijerEYro r=212....s 4)
j€Eo
jeEo j€Eo

)»j,)»jZO j € Eo
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SinceDMU, exhibits DRS, therd ;¢ A7 > 1in (1). Let} ¢ Af = 6. Obviously,
6 > 6 is a feasible solution to (1). Therefox?(j € E,) andd are also a feasible solution
to (4). Therefore (3) is feasible. ]

From lemma 1 we know that if the following regularity condition is true, then RTS
classifications can be uniquely determined E{eEO A in any optimal solution to (1)

(or (2)).

Regularity Condition (RC1).3 ;¢ 2] = 1in all possible optimal solutions for the CRS
DMUs.

Note that multiple optimal solutions of lambda variables may occur even under RC1. We
also require the following regularity condition (RC2) on the convexity of the CCR efficient
facet. RC2 is closely related to the concept of “face regularity” of Thrall (1996).

Regularity Condition (RC2). Supposek, forms an efficient facet. Then, any convex
combination of CCR efficient DMUs ift, is still on the same efficient facet.

THEOREM1 Suppose regularity conditions RC1 and RC2 hold. Then

(a) CRS prevail for DM if and only if ¢} = 1;

(b) DRS prevail for DM if and only if ¢ < 1;

(c) IRS prevail for DM if and only if ¢} > 1 or (3) is infeasible.

Proof. Supposep; = 1. SinceDMU; (j € Eg) exhibit CRS, by RC2PMU, has an

optimal solution to (1) wichJ-eED Af =1and9* = 1. ThereforeDMU, exhibits CRS.
Next, if DMU, = (Xo, Yo) €xhibits CRS, theiDMU, (8§) = (8X,, Yo) also exhibits CRS

under (1), wheré* < § < 400, andd* is the optimal value to (1) when evaluatibiiU,,.

Supposeyg # 1. LetA] = ggij, whereiS (] € Eo) is an optimal solution to (3) associated
with ¢}. We have

1 .
ijxijf—*xio i=12...,m
jeEo 2
Z)‘jyrjzyro r=1,2...,s;
j€Eo

1 .
Z}sz_*<1 ] € Eo.
jeEo %o

If w—lé < #*, then the optimality 06* is violated. Ifw—ls > §*, then Ietw—lé = 86*. Obviously,

(p—lé is the optimal value to (1) when evaluatintk§, v,), whered* < § < +oo. However,

> jeg, i < lviolating RC1. Thereforgy = 1 must hold. This completes the proof of (a).
If 3 < 1, then the optimal value to (3) is equal to one BIMU, = (Xo, ¢3Yo). From

(a), we know that CRS prevail fdMU,. ThusDMU, can not exhibit IRS. (We can not
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decrease the outputs and cause a IRS DMU to exhibit CRS). Therefore DRS prevail for
DMU,. This completes thié part of (b).

From lemma 3 and (a), we know that if (3) is infeasible, then IRS must prevail for pMU
If 93 > 1, then similar to the proof af part of (b),DMU, can not exhibit DRS. Therefore
IRS prevail forDMU,. This completes the proof @f part of (c).

Theonly if part of (b) and (c) follows directly from the mutually exclusive and exhaustive
conditions specified in the theorem. ]

Remark 2. Under RC1, any proportion of output change in a CCR-inefficient DMU
exhibiting CRS will alter its RTS nature. Thamly if parts of (b) and (c) are true without
RC1. We see that i} < 1, thenDMU, will also be termed as having DRS by (2). Thus
(3) finds out the identical DRS regions under (1) and (2). Finally note that this theorem
gives an alternative approach for estimating the RTS.

THEOREM 2 Suppose DM exhibits DRS. I < g < 1then the DRS classification still
holds for a proportional decrease of amouht

Proof. Suppose the outputsBMU, decreasetByio (r = 1,2, ...,5) wherep? < B <1.
If the RTS estimate is no longer held, then the RTdAU,, will be CRS or IRS.
Consider the following linear programming problem:

@ = maxg,
s.t. Z)\jxijfxio i=1,2,...,m
j€Eo

> AjYij Eéo,éyro r=212,....,s; (5)
jeEo

Yoa=1
j€E,

Obviously, (5) has a feasible solutionxf (j € Eo) andg, = %5. Thus eithewp; = 1 or
¢ > 1L will violate the optimality ofp}. Therefore DRS still prevail oDMUs,. ]

THEOREM3 Suppose DMV exhibits IRS and (3) is feasible. If< « < ¢} then the IRS
classification continues to hold for an increase of amaunt

Proof. The proof is analogous with that of theorem 2 and is omitted. [ |

Thus when (3) is feasible, the optimal value to (3) determines the maximum possible
output proportional change factors for IRS and DRS DMUs which preserve their RTS
classification.

If (3) is infeasible, then these IRS DMUs do not belongTip In this situation, we
consider the output-based CCR model (2) to determine the maximum perturbation.

THEOREM4 Suppose (3) is infeasible. Letsatisfyl < o < 9*, whered* is the optimal
value to (2) when evaluating DM Then IRS continue to hold for DMJor an increase
of amountx.
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Proof. Suppose the output &MUy, is increased té@, where 1< & < ¢*, and the resulting
DMU exhibits CRS or DRS. Then we have an optimal solutign(j € Eo) ando™* to (1)
such that

Z )»}kXij <0*o Ii=12,...,m
i€Eo
Z )‘}kyrj <a¥o r=12,...,s
i€Eo
> A >1 j € Eo.
i€Eo
Obviously, A; = Ailx and g, = ﬁ is a feasible solution to (3) violating the
jeEo ) jeEo )
infeasibility of (3). ’ n

Remark 3. In this situationDMU, is moved toward the CCR frontier. Theorem 4 indicates
that if (3) is infeasible then the input-based and output-based DEA techniques both classify
DMU, asIRS. Thus (3) is also an indicator of the identical IRS regions yielded by (1) and (2).

It can be seen that measure (3) not only analyzes the stability of the RTS classifications
but also gives the RTS classifications. i.e., both the RTS classification of a specific DMU
and its stability can be obtained from one model.

The above discussion only considers proportional output changes. In fact, we can easily
consider non-proportional changes. Note thaDMU, exhibits DRS, therp} < 1 in
(3). This implies that thiDMU, is BCC-extreme-efficient and in set E (the DMU group
Jo € J now consists 0DMU; (j € Ey;) andDMU,). Therefore we may directly employ
the technique in Zhu (1996) and Seiford and Zhu (1998a, 1998b) to determine the possible
output decreases;, < 1 defined iny,, = By (r = 1,2,...,5s) which preserve the
DRS classification oDMU, (see Charnes and Neralic (1990) for an alternate approach to
sensitivity analysis in DEA).

B = maxpi
s.t. Z)\jxijfxio i=12....,m
j€Eo
> AjYki = BrYko
< (6)
2 AV = Yo r #k
j€Eo
> A=1
j€Eo
A >0 j € Eo

Obviouslygi <1(k=r =1,2,...s). Model (6) gives the possible maximum decrease
rate for each single output which allows DRS to prevailBdiU,.

THEOREMS5 DRS continue to hold for DMwith individual decreaseg;, if and only if
(B1, ..., Bs) € A, whereA = {(B1,....Bs) | BF < B <Lr=1...,sand AB1 +
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.-+ AsBs > 1} and the parameters [/Acan be determined by the following system of
equations:

BiAi+ Ao+t As=1

A+ BiAs+ -+ As=1
1+ B5A s @)

A+ A+ +BIA=1

Proof. From theorem 1, we know that the DRS natureDdfiU,, stays unchangeifi and
only if DMU;, is still BCC-extreme-efficient with reference iy . Therefore the proof is
the same as that in Zhu (1996). [ |

Now if DMU, exhibits IRS, then the above development of individual changes again
applies. If (3) is feasible, then we use (6) to calculate the maximum increase,ratel
defined iny, = a Yo, for each single output to allo®MU, to exhibit IRS; if (3) is
infeasible, we use a (2)-like formulation, i.e., we delete the convexity constraint in (6).
That is,

o = Mmaxoy
s.t. Z)\jxijfxio i=212...,m
j€Eo
> A Y = kYko
. 8)
Z)‘jyrjiyro r#k
j€Eo
Ty Aj =2
j€Eo
A =0 j € Eo

If (3) is feasible, letr; = 7, = 1, i.e., (8) is identical to (6); if (3) is infeasible,
let 71 = m, = 0, i.e., (8) is developed from (2). Obviously; > 1k =r1 =
1,2,...,9).

THEOREM6 IRS continue to hold for DMJif and only if (a4, ..., as) € A, whereA =
{(@1,...,08) |1 <op <ef,r=1,...,sand Ax+- - -+ Asas < 1} and the parameters
of A can be determined by using instead ofg r = 1,2, ...,s)in (7).

Proof. The proof is similar to that of theorem 5. But in this caB®)U, is moved toward
the boundary ofT, from the inside ofT, when (3) is feasible, or it is moved toward the
CCR frontier when (3) is infeasible. ]

Theorems 5 and 6 provide the necessary and sufficient conditions for preserving the RTS
classification oDMU,,.
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(3.B) Sensitivity of the RTS Classifications in Terms of (2)

We now consider input perturbations instead of output changBdvit,. Note that un-
der (2), if DMU, exhibits DRS, then increases in inputs can not change its DRS nature.
Likewise, if DMU, exhibits IRS, decreases in inputs can not change its IRS nature unless
DMU, reaches the CCR frontier. Therefore we only consider input increases and decreases,
respectively, for IRS and DRS DMUs.

Suppose thddMU, may proportionally increase and decrease its inputs, respectively, by
n > 1andé < 1, up tonx andéxi (i = 1,2, ..., m) while its RTS classification still
holds.

In order to calculate andé, we define the following measure:

¢y = Min{go: (PoXo, Yo) € To} 9

where &, Yo) represents the input and output vector BiMU, and¢; can be calculated
as the solution to the linear programming problem:

¢s =ming,
st. > AjXij < poXio 1=1,2,...,m;
j€Eo

Y AYi=Ye r=12...s
jeEo

5=

Note that the above model is the input-based BCC modg)} i= J. As for theorem 1,
four possible cases are associated with (9), thapjs= 1, ¢5 > 1, ¢3 < 1 or (9) is
infeasible, and one can obtain the following RTS characterization.

THEOREM 7

(a) CRS prevail for DM{ if and only if ¢ = 1,
(b) IRS prevail for DMU if and only if ¢3 > 1;

(c) DRS prevail for DM{ if and only if ¢ < 1 or (9) is infeasible.

Remark 4. Obviously, no input changes are alloweddMU, if CRS prevail when RC1
holds. Theonly if parts of (b) and (c) are true without RC1. If (9) is infeasible, then DRS
must prevail orDMU,. If ¢ > 1, thenDMU, will also be termed as having IRS by (1).
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l.e., (9) finds out the identical IRS regions generated by (1) and (2). This theorem also gives
an alternative RTS method under the output-based DEA technique.

Furthermore we have:

THEOREM8 Suppose DMl exhibits IRS. For an input increase of amoyntwherel <
n < ¢3 then the IRS classification continues to hold.

THEOREM9 Suppose DMJexhibits DRS and (9) is feasible. For aninput decrease amount
of &, wherep* < & < 1, the DRS classification continues to hold.

Thus when (9) is feasible, the optimal value to (9) determines the maximum possible
input proportional change factors for IRS and DRS DMUs which preserve their RTS clas-
sifications.

If (9) is infeasible, then these DRS DMUs do not belonglto In this situation, we
consider the input-based CCR model (1).

THEOREM 10 Suppose (9) is infeasible. For an input decrease amouét efheref* <
& < 1then DRS still prevail for DM, where6* is the optimal value to (1) when evaluat-
ing DMUj.

Remark 5. This theorem indicates that if (9) is infeasible then the input-based and output-
based DEA techniques both decl®®U, as DRS. Thus (9) also indicates the identical
DRS regions yielded by (1) and (2).

From the above discussion, we see that measure (9) can also be used to estimate the RTS
classification foDMU, in addition to its role in sensitivity analysis.

We may also consider non-proportional changes in all of the inpudéviif, . Note that
if DMU, exhibits IRS, the? > 1in (9) indicating thaDMU, is BCC-extreme-efficient
with reference toJ,. Therefore, we can employ the method in Zhu (1996) and Seiford
and Zhu (1998a, 1998b) to determine the stability region of IRS classification when all the
inputs increase non-proportionally. On the other hanBNIU, exhibits DRS, then either
¢s < loro* < 1. Therefore we can determine the possible input decrease region before
DMU, is moved onto the boundary @§. In fact, these developments are analogous with
those described in the output change case of (3.A), and we leave the details to the interested
readers.

4. General Situation

The previous developments assume that (1) and (2) @]ve%o A} = 1in all possible
optimal solutions for CRS DMUs. If this does not hold, thel ¢ A may also be either
greater or less than one for the CRS DMUs associated with different optimal basis sets.
Consequentlyp; in (3) (or¢; in (9)) may also be larger or smaller than one in the different
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optimal basis sets associated with Therefore, some data perturbationsinthe CRS DMUs
can be allowed. In this section, we will further discuss the RTS sensitivity analysis without
requiring RC1 and RC2. Note that¢f, > 1 for DRS DMUs (or¢} < 1 for IRS DMUs),

then RC2 is violated.

(4.A) Stability of the RTS Classifications in Terms of (1)

SupposeDMU, exhibits CRS. On the basis d&,, we define the following two linear
programming problems:

()t =min Y A

jeEo
st. Y ijxi,- < 0*Xio i=212,...,m;
jeEoA (10)
> A Y = Yo r=12,...,s;
j€Eo
A >0 j €Eo

(o)t =max ) A

j€Eo
st. 3 AjXj < 0% i=12...,m;
jEEOA (11)
2 AV = Yro r=12...,s
j€Eo
5‘] >0 j € Eo

whereg* is the optimal value to (1) when evaluatiBiU, . A

Sinc?DMUO exhibits CRS, thereforey = (3¢ A ™ > 1 (0 = (Z}jGED A< 1)
whereA] (J € Eo) represent optimal solutions to (10) ((11)). Obviousjy(j € Eo) with
Yice, A <1 (X, A = 1) is also an optimal solution to (1) ((2)).

THEOREM11 Suppose DMy exhibits CRS. Ify € R°RS = {x: min{l,0}} < x <

max{1, ¢f}}. Then the CRS classification continues to hold, wherepresents a propor-

tional change of all outputsf, = xYyio (r = 1,2,...,s) and,t} ando; are defined in
(10) and (11) respectively.

Proof. By Thrall and Banker (1992), we know tha@t'c;Xo, 74 Yo) and 0*oXo, 0 ¥o) both
exhibit CRS. Consequentlyd, 75 Yo) and Ko, o4 ¥o) exhibit CRS. Therefore if mifl, o5} <
x <maxl, t}}, thenDMU, (= Xo, x Yo) still exhibits CRS. [ |

Remark 6. If ZjeEo Aj = 1 for all alternate optima to (1), thesy = ¢* = 1 and no
proportional outputincrease is allowed If; g ; < 1forall alternate optimarto (1), then

74 = 1 and no proportional output decrease is aIIowe(E]LEO Aj can be equal to, larger

than, or less than one, then both proportional increases and decreases of output are possible.
(See the example in Appendix B.) If RC2 holds, tiRfRS = {x: min{1,0}} < x <
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max1, 7, ¢3}. Furthermore, if only RC1 is violated, theorem 1 (a) should be modified to
read: CRS prevail fobMU, if and only if there exist som&, such thatp* = 1 in (3).

Next we discuss the RTS sensitivity analysis for IRS DMUDMU,, exhibits IRS, then
ZjeEo Aj < 1inall optimal solutions to (1). Thusg; > 1in (11).

THEOREM12 Suppose DM exhibits IRS. The IRS classification continues to hold for
a € R'"RS={a: 1 < a < 0}, wherex represents the proportional increase of all outputs,
Yo = a¥ro (r =1,2,...,8) ando is defined in (11)

Proof. SupposeDMU, = (Xo, @ Yo) and DMU/ exhibits CRS or DRS. TheBDMU} =
(a 0*Xo, ¢ Vo), must also exhibit CRS or DRS. Furthermore, we have

> A%y S yraf™ o < ab™Xo | =1,2,...,m;
j€Eo

Z)\TYrjfayro r=12,...,S;
j€Eo

X A=1 j € Eo.
j€Eo

wherey* is the optimal value to (1) when evaluatiByiUy . Obviously,%? (jeEgisa

AF
feasible solution to (11).Thu§%°J > 1> 1L violating the optimality of (11). |

From the proof of theorem 4, we know that theorem 4 holds in the absence of RC1 and
RC2. Therefore if (3) is infeasible fddDMU,, then the RTS stability region R'RS =
{a: 1 <a < max{v*, of}}, whered* is the optimal value to (2).

Finally, we consider the DRS DMUs.

LEMMA 4 If DMU, exhibits DRS in (1), then DMUmust exhibit DRS in (2).

Proof. Suppos®MU, exhibits CRS or IRSin (2). Thenby lemma 2, we have ¢ A <
6* < 1, whereij (j € Eo) andd™ is an optimal solution to (1). Sind@MU, exhibits DRS
in (1), thereforeZieEo A7 > 1in all alternative optimal solutions to (1). Thas > 1, a
contradiction. ]

The following lemma is obvious. Note th@t does not necessarily represent the optimal
value to (3).

LEMMA 5 If CRS prevail for DM, then there exists some, Buch thatp, = 1in (3).

THEOREM 13 Suppose DMY exhibits DRS an@} < 1. Then the DRS classification
continues to hold fop} < B < 1, whereg represents the proportional change of all
outputs,¥io = By (r =1, 2, ..., s) andy} is the optimal value to (3).
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Proof. By lemma 4,DMU, exhibits DRS under (2). Next, &MU, = (X0, 8Yo). Then
DMUy still exhibits DRS under (2). Thus

Zkfgxio i=12,...,m
jeEo

> MY <0 By r=12...,s
i€Eo

YA =1 j € Eo.
j€Eo

whered* is the optimal value to (2) when evaluatibMU;,.
If DMU, exhibits IRS in (1), then, by lemma ;—‘@ < 1. Thusp, = 22— > ¢

o Z €Eo AT
is a feasible solution to (3) which violates the optimalityjt J
If DMU, exhibits CRS, then, by lemma 5, we haye = 1 when calculating (3) for
DMUyg. Thuspg > ¢} which violates the optimality op;. |

However, one may also use the optimal value to (1f)< 1, to determine the stability
region, particularly in the case @f > 1 for a DRSDMU,. This is characterized by the
following theorem.

THEOREM 14 Suppose DMYJexhibits DRS. Then the DRS classification continues to hold
for g € RPRS = (B: ¥ < B < 1}, wherep represents the proportional change of all
outputs Yo = By (r = 1,2, ..., m)andz} is defined in (10)3

Proof. The proof is analogous with that of theorem 12 and is omitted. ]
Finally, we can use; ando; to estimate the RTS classifications.
THEOREM 15

(a) CRS prevail for DM{ifandonlyifoy <1 < J;
(b) DRS prevail for DM if and only if tj < 1;
(c) IRS prevail for DMY if and only if o > 1.

Proof. Theonly if parts of (b) and (c) are obvious. Next,f < 1, thenzjeEo )ALJ* > 1,
where}; e X}* is the optimal value to (10). This indicates that g A > 1 in all
alternative optimal solutions to (1). Thus DRS prevail@dlU,. This completes the proof
of theif part of (b). The proof of th& part of (c) is similar. Théf and theonly if parts of
(a) follow directly. [ |
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(4.B) Stability of the RTS Classifications in Terms of (2)

Consider the following two linear programming models:

@)t =min Y A

j€Eo
st. 3 AjXj < Xio i=12...,m;
j€Eo (]_2)
S AV = Ve r=12,....5
jeEo
2 >0 j € Eo.

Gt =max } A

JGEO
s.t. Zijxijfxio i=12...,m
<5 (13)
Zijyszﬁ*yro r=212...,5s
jeEo
A >0 j € E,.

whered* is the optimal value to (2) when evaluatibyU,. 3
Suppos®MU, exhibits CRS. The} ;g 4] < lin(12)and) ;g 4] > 1in(13),i.e.,
7y > 1 ands; < 1 respectively. Similar to theorem 11, we obtain the following.

THEOREM16 Suppose DMy exhibits CRS. Ify € R°RS = {y: min{l,03} < x <
max{1, ¢F}}. Then the CRS classification continues to hold, wherepresents the pro-
portional change of all inputsti, = yXio (i =1, 2,..., m) andz} andg; are defined in
(12) and (13) respectively.

Remarks. If 3, ¢ Aj > 1in all alternate optima to (2), thef* = 1 and no proportional

input increase is allowed. EjeEo Aj < 1in all alternate optima to (2), thefj = 1 and

¢* = 1 and no proportional input decrease is aIIowedZijeEo Aj can be equal to, larger

than, or less than one, then both proportional input increase and decrease are possible. In
this situation E, in (9) is identified by the different optimal basis sets associated with non-
zero lambdas in (2). If RC2 holds, th&FRS = {y: min{1, o, ¢} < x < maxl, ti}}.
Furthermore, if only RC1 is violated, theorem 8 (a) should be modified to read: CRS prevail
for DMU, if and only if there exists &, such thatp* = 1 in (9).

If DMU, exhibits DRS, thelzjeeo ij‘ > 1,i.e.,,7* < 1in(12) and similar to theorem 12,
we obtain

THEOREM 17 Suppose DMl exhibits DRS. The DRS classification continues to hold for
£ € RPRS = (£: 7 < £ < 1}, where& represents the proportional decrease of all inputs,
Rio = &Xio (i =1, 2, ..., m) andt} is defined in (12).

Theorem 10 holds for the situation without RC1 and RC2. Therefore if (9) is infeasible,
then the RTS stability region RPRS = {£: min{6*, T¥} < & < 1}, whered* is the optimal
value to (1) when evaluatingMU,.
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For IRS DMUs, we have

THEOREM 18 Suppose DM exhibits IRS an@} > 1. Then the IRS classification con-
tinues to hold forl < n < ¢}, wheren represents the proportional change of all inputs,
Rio = nXio (i =1, 2, ..., m) andg; is the optimal value to (9).

However, one may also use the optimal value to (I))> 1, to determine the IRS
stability region, particularly in the case ¢f > 1 for DMU,. This is characterized by the
following theorem.

THEOREM19 Suppose DMV exhibits IRS. Then the IRS classification continues to hold
forn € RRS = {n: 1 < n < 6}, wheren represents the proportional change of all inputs,
Rio = nXio (I = 1,2, ..., m)ands; is defined in (13).

5. Concluding Remarks

The estimation of RTS in DEA provides important information on scale efficiency and
on improving the performance of DMUs. One would like to determine the movement of
CCR-inefficient DMUs onto the frontier in improving directions. Therefore, the sensitivity
of the RTS classifications is extremely important for empirical applications.

The current paper develops linear programming techniques for studying the sensitivity of
RTS estimation obtained from the input-based and output-based DEA methods respectively.
The only information needed is the optimal basis set (or facet DMUs) obtained from eval-
uating a specifiOMU, by the original CCR model. The sensitivity analysis method can
easily be applied to real world data sets via existing DEA codes. The sensitivity analysis
approach is developed for handling situations when output perturbations odivtll
under the input-based DEA model and input perturbations under the output-based DEA
model.

In addition, our sensitivity analysis approach also gives an alternative method to classify
RTS for each DMU, and it can be employed to identify the identical RTS regions obtained
from input-based and output-based DEA models respectively. In particular, if the CCR
model yields the unique optimal lambda solution, the summation of the lambda variables
can be directly used to define the lower or upper boundary for the RTS stability regions.

Inthe current study, we only consider data perturbations for CCR inefficient DMUs. Note
that the movement of CCR efficient DMUs may also change the RTS classification. By the
ray unboundedness assumption of the CCR model, the effect on the RTS classification by
the movement of CCR efficient DMUs along the frontier is straightforward. However, one
possible future research subject would be to examine situations where both CCR efficient
DMUs and CCR inefficient DMUs were perturbed.

Appendix A

We provide a simple numerical example which illustrates the sensitivity analysis of RTS
results obtained from the input-based RTS method. An artificial set of data, containing 6
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Stability of the RTS

Qutput{y)

Figure A.Stability of the RTS.

Table A-1.Sample data set.

DMU 1 2 3 4 5 6

input (xj) 15 2 25 5
outputf;) 35 6 7 10 6 4

]

DMUs with a single output and a single input, was generated. Raw data are provided in
Table A.1. Figure A displays the s& used in measure (3).

From Figure A, we know that DMU2 is CCR-efficient. DMUS5 exhibits CRS, DMUs 1
and 6 exhibit IRS, and DMUs 3 and 4 exhibit DRS. Table 2 provides the sensitivity results
of the RTS estimation on DMUs 1, 3, 4, 5 and 6 when the output is changed.



72 SEIFORD AND ZHU

Table A-2.RTS sensitivity results.

DMU 1 3 4 5 6
Sensitivity ~ 9* = 9/7* ot =6/7 @r=13/5 o= ©:3/2
Result aell,97 pe®/7,1] Be@3/51] a=p=1 ac[l,3/2

# (3) (or (A.1)) is infeasible for DMUL.

For this data set;z, = {DMUZ2}. Thus (3) can be written as

@& =mingg
st. 20 < X,
61 > ¢oYo
A=1

(A1)

where o, Yo) represents one of DMUs 1, 3, 4, 5 and 6.

DMUs 3 and 4 exhibit DRS, so we hayg < 1. The value ofp} gives the maximum

distance from DMU3 or DMU4 to the boundary (GB) @f. For instance, in DMU4,

N AC = ﬁ < 1. The two DMUs can not be moved infg or onto the boundary of,

and still maintain the DRS classification. For example, if the proportional output decrease
is in the interval 0f(3/5, 1], then DMU4 still exhibits DRS, otherwise CRS and then finally
IRS will prevail.

Although both DMUs 1 and 6 exhibit IRS, (A.1) is infeasible for DMU1. Thus, we
calculate the output-based CCR model (2) and obfdin= 9/7 where point D is the
referent DMU. This means that the output of DMU1 must be greater than 9/2 before CRS
hold for DMUL1. In fact DMU1 will move onto the CCR frontier (the ray OD in Figure A).
Note that DMU1¢ T, and both (1) and (2) give the same RTS estimation of IRS. Since
DMUG6 belongs toT,, we have the optimal value @ff = Eg =2 = Wh|ch means
that if the output increase factor is less than 3/2, then the current RTS classification (IRS)
will continue to hold. Geometrically DMU6 can not be moved outsidépfinder output
increases by more than'3.

In addition, note thap? = 1 for DMU5 where CRS prevail. This means that any change
in output will cause DMUS to leave the boundaryTef

Appendix B

Consider an example taken from Zhu and Shen (1995) with 9 s= 1, n=4 and

X 01 2 40 3
x5 | =025 2 10 2
i 01 1101

DMUs 1, 2 and 3 are CCR-efficient and are on the same efficient facet giverib2x, =
6y. Obviously, RC2 is satisfied. DMUA4 is inefficient with* = 6/7. We obtain
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Table C-1.RTS Stability regions for the Chinese cities.

Cites RTS Eo w5 75,05  Stability Region
2 DRS 6,821 0.46955 0.36258  (0.36258, 1]
3 DRS 1,21,24 1.31533 0.50761  (0.50761, 1]
4 DRS 8,21,24,26 085771 070771  (0.70771,1]
5 DRS 8,24,26 0.79834 0.62305  (0.62305, 1]
7 IRS 6,8,21,26 148776 120627  [1,1.20627)
9 IRS 1,821 1.37427 1.20627  [1,1.20627)

10 IRS 6,821 159622 1.51057  [1,1.51057)
11 IRS 6,8,21,26 1.24228 1.06838  [1,1.06838)
12 IRS 6,826 1.21293 1.03842  [1,1.03842)
13 IRS 1,821 1.97062 2.88184  [1,2.88184)
14 RS 1,821 1.30574 1.16279  [1,1.16279)
15 IRS 8,21,24,26 112570 1.06045  [1,1.06045)
16 IRS 1,821 hfeasibe  2.95858  [1, 2.95858)

17 IRS 6,8,21,26 155605 176367  [1,1.76367)
18 IRS 8,21,26 mieashie  1.70940  [1, 1.70940)

19 IRS 1,8,24 1.47641 1.42045  [1,1.42045)
20 IRS 6,821 e 2.34192  [1,2.34192)

22 RS 1,821 1.20103 1.14416  [1,1.14416)
27 IRS 1,25 e 7.75194  [1,7.75194)

28 IRS 6,826 1.36882 1.34590  [1, 1.34590)

Eo = {DMU1, DMU2, DMU3} whereDMU2 = 2DMU1 + £DMU3 is in set E. Mul-
tiple optimal lambda solutions are detected in evaluating DMU4 using (1) (see Zhu and
Shen, 1995).
First calculate (3), that is
Yg = Maxgg
S.t. 0.1 Ay + 2hp 4+ 4003 3
02501 +2x+ 1003 < 2

0.1 A1+ A2+ 10k3 > ¢q

M+ A2+ A3=1
A1, A2, 23>0

IA

The optimal value is ¢} = 7/6. Next calculate (10), that is
(t) "t =minis+ Az + As

st. 0.1 Ay + 20, +4003 <3 x

0.2501 + 20,4+ 1003 <2x

01 i+ X+103>1
A1, A2, 23>0

~Nlo ~Nlo
P
N}

« _ 210 % _ 100 4 w11
We havery = 1577 With A7 = 57, A5 = 0 andA} = 55,

Finally, calculate (11). We havq, B with 23 =0,43 = 2 anda} =

Therefore the stability region for the CRS cIaSS|f|cat|0|{1)¢s 20 <x
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Appendix C

We illustrate the RTS sensitivity analysis method on a real world data set consisting of
28 Chinese cities (DMUSs) in 1983 from Charnes, Cooper and Li (1989). There are three
outputs (gross industrial output value, profit & taxes, and retail sales) and three inputs (labor,
working funds, and investment).

Table C.1 reports the results for the 20 inefficient cities. Column 1 gives the DMU
numbers which are the same as in Charnes, Cooper and Li (1989). RTS classifications and
E, are reported respectively in columns 2 and 3. Column 4 gives the optimal value to (3),
@, or the optimal value to (2)} when (3) is infeasibler or o are reported in column 5.

The RTS stability regions are reported in the last column.

Two efficient DMUs, namely, DMU23 and DMU28, do not appeaEiywhen evaluating
other inefficient DMUs. It is easy to see that this data set satisfies RC1, but violates RC2,
because; > 1 for DMU2.

Notes

1. ThesetoDMU; (j € Eo) may be differentfor each differeBiMU, under evaluation. Furthermorg, C Blo
for input-orientation (oB O, for output-orientation) of Seiford and Thrall (1990, p.19) dkylis related to
the Primal Representation Theorem of Charnes, Cooper and Thrall (1991, p. 215) in which a CCR referent
group is determined via a strong complementary slackness condition (SCSC) solution. Also, DEJs in
may not form an efficient facet (see Thrall, (1996)).

2. We consider the RTS of BCC non-frontier DMUs by their BCC projections.
3. Note thaipy = 75 < 1is a feasible solution to (3). Therefapg > ;.
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