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Abstract

This paper surveys recently developed analytical methods for studying the sensitivity of
DEA results to variations in the data. The focus is on the stability of classification of
DMUs (Decision Making Units) into efficient and inefficient performers. Early work on
this topic concentrated on developing solution methods and algorithms for conducting such
analyses after it was noted that standard approaches for conducting sensitivity analyses in
linear programming could not be used in DEA. However, some of the recent work we cover
has bypassed the need for such algorithms. Evolving from early work that was confined
to studying data variations in only one input or output for only one DMU at a time, the
newer methods described in this paper make it possible to determine ranges within which
all data may be varied foranyDMU before a reclassification from efficient to inefficient
status (orvice versa) occurs. Other coverage involves recent extensions which include
methods for determining ranges of data variation that can be allowed when all data are
varied simultaneously forall DMUs. An initial section delimits the topics to be covered.
A final section suggests topics for further research.

Keywords: Efficiency, Data Variations, Sensitivity, Stability

1. Introduction

This paper surveys recently developed approaches for determining the sensitivity (or sta-
bility) of results secured in DEA analyses. The emphasis is on “methodological” rather
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than “substantive” approaches—where the latter take the form of general statements about
the stability of DEA resultsper se, as in , for instance, the early book on DEA by Sexton,
Silkman and Hogan (1986).

We proceed in the spirit of Grosskopf (1996) who, in her survey, distinguishes between
(1) the statistical (or stochastic) approaches which are commonly used in the economics and
econometrics literatures, including the literature treating frontier estimation and efficiency
evaluation, and (2) the deterministic approaches like those commonly used in the literatures
of operations research and management science. The discussion in Grosskopf is oriented
toward (1). Ours is oriented toward (2). In particular, the meaning we assign to the terms
“sensitivity” (or stability) analysis conforms to the usages commonly assigned to these
terms in the literature of mathematical programming.

We confine attention to analyses of effects occurring from data variations. Other topics
such as sensitivity to model changes or to diminution or augmentation of the number of
DMUs, e.g., as in the sampling distributions discussed in Simar and Wilson (1998), are not
examined in detail. An important list of papers on the topic we address is to be found in a
long list of publications emanating from research jointly undertaken by Charnes and Neralic.
See the references cited in Seiford (1994). This work was originally confined to stability
of DEA results under data variations for one input or one output. This was subsequently
extended to allow simultaneous variations of all data—first under proportional variations
of all data in Charnes and Neralic (1992b) and subsequently extended to arbitrary changes
in all data for the “additive model,” as reported in Neralic (1997).

Tracking this line of work by Charnes, Neralic,et al. would involve tracing its origins
back to Charnes, Cooper, Lewin, Morey and Rousseau (1985) which, in turn, represented a
response to their finding that the sensitivity analysis methods used in linear programming
were not suited for use in DEA. This means, as noted in Charneset al. (1985), that new
algorithms were needed because the data to be varied occur on both sides of the constraints
in the linear programming models used in DEA. Fortunately a good start could be made
in developing such algorithms because preparatory work was available from preceding
literature in the form of the publication by Charnes and Cooper (1968) which deals with
the effects of data variations on matrix inverses like those used for sensitivity analysis in
linear programming. Theorems in the latter paper could therefore provide underpinning for
extensions that were needed (and have since been effected) for use with DEA.

The emphasis on new and needed algorithms leads us to characterize this line of work
as “algorithmically oriented.” This is important, of course, but an effort to discuss this
work in the detail needed to do it justice would greatly lengthen the present paper. Because
we do not treat this work in detail in the present paper we direct interested readers to the
extensive references provided in Neralic (1997). However, we do follow the precedents of
Charnes and Neralic by turning attention to (i) sensitivity analysis of inputs and outputs
in one DMU and then (ii) extend this to concepts and methods that have been developed
for treating simultaneous variations in all inputs and all outputs in all DMUs. For (i) we
examine the introduction of metric concepts by Charneset al. (1992a, 1996) which are
applied in ways that make it possible to determine allowable variations in all inputs and
outputs for one DMU. For (ii) we first turn to work by Thompsonet al.(1994, 1996) which
uses “multiplier” model approaches to data variations in all inputs and all outputs in all
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DMUs simulataneously. We then follow this by describing treatments of this same topic
via “envelopment” models as in Seiford and Zhu (1998b, 1998c). See also Neralic (2000).

All of this work is confined to determining the stability of the originally obtained clas-
sifications of efficient into inefficient DMUs. Topics such as the magnitude of changes in
inefficiencies (in each input and output) are covered only as a byproduct of these efficiency-
inefficiency reclassifications. Hence a final section suggests this and other topics for further
research.

New contributions to the thus summarized developments are introduced at various points
which include new theorems as well as interpretations and suggestions for use. However,
this is done only to clarify the discussion or to repair omissions. In any case we restrict the
discussion in this paper to analytically formulated (mathematical) methods for examining
stability and sensitivity of results to data variations with given variables, given DMUs, and
given criteria for evaluating efficiency. That is, we do not cover the now numerous stability
analyses which have been conducted in simulation studies like those initiated by Banker
et al. (1988)—such simulations have been subsequently extended to cover changes in the
variables used by the DMUs to be considered, as in, for instance, Bankeret al. (1996) or
Ahn and Seiford (1993). We now conclude this introductory discussion with the following
comment which is taken from Cooper, Seiford and Tone (1999, p. 252):

Comment: As in statistics or other empirically oriented methodologies, there is a
problem involving degrees of freedom, which is compounded in DEA because of
its orientation torelative efficiency. In the “envelopment model,” the number of
degrees of freedom will increase with the number of DMUs and decrease with the
number of inputs and outputs. A rough rule of thumb which can provide guidance
is to choose a value ofn that satisfies

n ≥ max{m× s,3(m+ s)}

wheren = number of DMUs,m = number of inputs ands = number of outputs.
Hereafter we assume that this (or other) degrees of freedom conditions are satisfied
and that there is no trouble from this quarter.

We hereafter assume the absence of problems that might arise from such degrees-of-
freedom considerations.

2. Definition of Efficiency

Various definitions of efficiency are available in the DEA literature. Unless otherwise noted,
the one we use is referred to as the “Pareto-Koopmans” definition of efficiency which we
articulate as follows,

Definition 1(Pareto-Koopmans Efficiency). A “Decision Making Unit” is efficient if and
only if it is not possible to improve some of its inputs or outputs without worsening some
of its other inputs or outputs.



220 COOPER ET AL.

The term “Decision Making Unit,” which we abbreviate to “DMU,” refers to the entity
(school, hospital, business firm, etc.) which is regarded as being responsible for converting
inputs into outputs. The above definition is then equivalent to asserting that a DMU is
efficient if and only if it is not dominated by some other DMU (or combination of DMUs)
with which it can be compared.

This orientation means that we are restricting attention to “technical” aspects of efficiency
(sometimes referred to as “waste”). Evaluations arising from prices, costs or preferences are
not addressed in this paper. No substitutions, exchanges or further utilization of resources is
needed to eliminate these inefficiencies when dominance of one DMU over another DMU is
present. In this sense the approach employed is “value free” and “objective”—i.e., given the
choice of inputs, outputs and DMUs, the same inefficiency vs. efficiency characterizations
will be secured for all users applying the same DEA model to the same data. See Post (1999)
for ways to incorporate utilities and preferences into DEA. See also Joro, Korhonen and Wal-
lenius (1998) for operationally implementable ways to identify decision maker preferences
in a manner that makes it possible to incorporate them in the evaluations that will be effected.

The analyses in DEA are “data based.” That is, the models used are non-parametric and
are therefore relatively free of the restrictive assumptions employed with other approaches.
There are, however, alternative models that can be used to identify differences such as “mix”
vs. “purely technical” inefficiency—where the latter, but not the former, does not involve
any change in input proportions used, or output proportions produced. The model we start
with is an extension of the “additive model,” as employed in Charneset al. (1992a, 1996),
which bypasses distinctions in mix and purely technical inefficiency and simply identifies
all inefficiencies in terms of non-zero slacks. (See Cooper, Park and Pastor (1999) for
further discussion of “mix” vs. “purely technical” and other types of inefficiencies, and see
Ahn, Charnes and Cooper (1988) for a discussion of the different DEA models and their
relations to each other.)

3. Metric Approaches for Inefficient DMUs

Having identified efficient and inefficient DMUs in a DEA analysis, one may want to know
how sensitive these identifications are to possible variations in the data. A new avenue for
sensitivity analysis was opened by Charneset al.(1992a).1 The basic idea is to use concepts
such as “distance” or “norm” (= length of a vector), as defined in the mathematical literature
dealing with metric spaces, and use these concepts to determine “radii of stability” within
which data variations will not alter a DMU’s classification from efficient to inefficient
status (orvice versa). See Charnes and Cooper (1961, Appendix A) for a discussion of
these and other metric concepts in which the usual mathematical treatments are simplified
by translating them into algebraic form for use in linear programming.

The classifications obtained from these “radii of stability” can range from “unstable”
to “stable” with the former being identified with an infinitesimal radius and latter being
identified by a radius of some finite value within which reclassification does not occur. A
point like F in Figure 1 provides an example identified as stable. A point like A, however, is
unstable because an infinitesimal perturbation to the left of its present position would alter
its status from inefficient to efficient.
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Figure 1. Stable and unstable DMU.

Among the metrics examined by Charneset al. (1992a), we select only the Chebychev
(= l∞) norm and use it to portray the essentials in these developments. As in Charneset
al. (1992a) we use the following model to give form to these ideas,

maxδ

subject to

yro =
n∑

j=1

yr j λj − s+r − δd+r , r = 1, . . . , s

xio =
n∑

j=1

xi j λj + s−i + δd−i , i = 1, . . . ,m

1=
n∑

j=1

λj

0≤ δ, λj , s
+
r , s

−
i , ∀i, j, r. (1)

Here yr j , xi j ≥ 0 representr = 1, . . . , s outputs andi = 1, . . . ,m inputs for DMUj ,
j = 1, . . . ,n, andyro, xio represent the observed value of outputr and inputi for DMUo,
the DMU to be evaluated relative to all of the other DMUs (including DMUj = DMUo).

All variables, includingδ, are constrained to be nonnegative in (1) while thed+r andd−i
are prescribed as positive constants (or weights). To simplify the discussions that follow
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we now assume that these weights are all unity so that, with alld−i = d+r = 1, the solution
to (1) may be written

n∑
j=1

yr j λ
∗
j − s+

∗
r = yro + δ∗, r = 1, . . . , s

n∑
j=1

xi j λ
∗
j + s−

∗
i = xio − δ∗, i = 1, . . . ,m (1.1)

where “∗” indicates an optimum and the value ofδ∗ represents the maximum that this model
allows consistent with the solution on the left.

The above formulations are for aninefficientDMU, which continues to be inefficient for
all data alterations which yield improvements fromyro to yro+ δ∗ and fromxio to xio− δ∗.
This means that no reclassification to efficient status will occur within the open set defined
by the value ofδ∗ > 0. Referred to as a “radius of stability,” this value ofδ∗ defines a
symmetric region within which all inputs and outputs for DMUo can be improved without
producing a change from inefficient to efficient status.

We now alter the above formulations to

maxδ + ε
(

s∑
r=1

s+r +
m∑

i=1

s−i

)
subject to

yro =
n∑

j=1

yr j λj − δ − s+r r = 1,2, . . . , s;

xio =
n∑

j=1

xi j λj + δ + s−i i = 1,2, . . . ,m;

1=
n∑

j=1

λj

0≤ δ, λj , s
−
i , s

+
r , ∀i, j, r. (2)

In this case (as previously noted) we have setd−i ,d
+
r = 1, ∀i, j, r in order to simplify

matters. See the discussion for (5), below. We have also modified the models in Charnes
et al. (1992a, 1996) by incorporating the slackss+r ands−i in the objective where they are
multiplied byε > 0, a non-Archimedean element defined to be smaller than any positive
real number.

It is not necessary to explicitly assign a value toε > 0. Instead, as in most DEA computer
codes, this is taken care of operationally by using a two-stage computation which may be
formalized as follows. Stage 1 secures an optimalδ = δ∗ without reference to the non-zero
slack possibilities. The latter are dealt with in stage 2 by incorporating this value ofδ∗ in
the following model

max
s∑

r=1

s+r +
m∑

i=1

s−i
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subject to

yro + δ∗ =
n∑

j=1

yr j λj − s+r r = 1,2, . . . , s;

xio − δ∗ =
n∑

j=1

xi j λj + s−i i = 1,2, . . . ,m;

1=
n∑

j=1

λj

0≤ λj , s
−
i , s

+
r ; ∀i, j, r. (3)

Thus no exchange betweenδ∗ and the slack values is permitted. This reflects the fact that
these slack values are multiplied byε > 0 in the objective of (2) and the definition ofε
makes it disadvantageous to effect increments in the slacks, however large, in exchange for
decrements inδ∗, however small.

Figure 2, below, helps to portray what is happening by reference to the square surrounding
F. This square (a symmetric figure referred to as a “unit ball” in Charneset al.) is generated
from the vector with lengthδ∗ indicated by the arrow. This length is determined by the point
of intersection with the frontier. That is, this point of intersection determines the radius of
stability becausex − δ∗, y+ δ∗, as in (1.1), provides contact with a point where a change
is effected from inefficient to efficient status.

For F the radius of stability is determined by a point of intersection with the efficient fron-
tier where the term efficiency refers to Pareto-Koopmans efficiency as stated in Definition 1

Figure 2. A radius of stability.
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in the preceding section. This is a consequence of the 2-stage optimization used in (2) and
(3). When (1) is used, however, the radius of stability may be determined by a frontier point
which is only “weakly efficient.” A case in point is exhibited by H in Figure 2 which has its
radius of stability determined by H′ which is a point on the frontier that admits reductions
in the input amountx without reducing the output amounty.

4. Relations to Other Models

We develop these latter comments in more detail by examining how these developments
relate to other models. We start with an additive model. Introduced into the DEA literature
by Charneset al. (1985), this version of an additive model is selected in order to align it
with the analogous formulations in (1) and (2).

max
s∑

r=1

s+r +
m∑

i=1

s−i

subject to

yro =
n∑

j=1

λj yr j − s+r , r = 1,2, . . . , s;

xio =
n∑

j=1

λj xi j + s−i , i = 1,2, . . . ,m;

1=
n∑

j=1

λj

0≤ λj , s
−
i , s

+
r ; ∀i, j, r. (4)

This model may be used to determine the efficiency of any DMUo in the sense of Defini-
tion 1 by reference to

Definition 2(Efficiency). DMUo, the DMU being evaluated, is efficient if and only if an
optimum is attained with all slacks zero in (4).

As can be seen, this model differs from (1) and (2) only in the statement of its objective
and omission of the extra variable,δ ≥ 0, around which the objective in (1) and (2) is
oriented. However, the two models are members of the same family in a manner that allows
us to use (4) in analyzing properties of model (1) and (2). We show this by means of the
following

THEOREM1 A solution to (2) yields values

y∗ro = yro + δ∗ + s+
∗

r , r = 1,2, . . . , s;
x∗io = xio − δ∗ − s−

∗
i , i = 1,2, . . . ,m;

in which y∗ro, x∗io are the coordinates of an efficient point.
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Proof. Using the thus defined values ofy∗ro, x∗io, we utilize (4) and apply Definition 2 to
prove this theorem as follows,

max
s∑

r=1

s+r +
m∑

i=1

s−i

subject to

y∗ro =
n∑

j=1

λj yr j − s+r r = 1,2, . . . , s;

x∗io =
n∑

j=1

λj xi j + s−i i = 1,2, . . . ,m;

1=
n∑

j=1

λj

with all variables constrained to be non-negative. Suppose we have an optimum solution
to this problem which we can write as

y∗ro =
n∑

j=1

yr j λ̂j − ŝ+r , r = 1,2, . . . , s;

x∗io =
n∑

j=1

xi j λ̂j + ŝ−i , i = 1,2, . . . ,m;

1 =
n∑

j=1

λ̂j

Rewriting this solution we have

yro =
n∑

j=1

yr j λ̂j − ŝ+r − δ∗ − s+
∗

r , r = 1,2, . . . , s;

xio =
n∑

j=1

xi j λ̂j + ŝ−i + δ∗ + s−
∗

i , i = 1,2, . . . ,m;

1 =
n∑

j=1

λ̂j .

We thus have a solution to (2) with the sameδ∗ but with new slacks(ŝ+r +s+
∗

r )and(ŝ−i +s−
∗

i ).
If any of thesês+r , ŝ

−
i values were positive we would be contradicting the assumption that the

s+
∗

r , s−
∗

i maximized the sum represented in the objective of the second stage optimization
for (2) that is represented in (3). This contradiction can be avoided only if all of the values
ŝ+r , ŝ

−
i are zero. It follows from Definition 2 that thesey∗ro, x∗io are the coordinates of an

efficient point.
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As a consequence of this theorem we can regard the “stability oriented” models developed
by Charneset al. (1992, 1996) as extensions of “efficiency oriented” versions of additive
models. In fact, the desired efficiency evaluation orientation is obtained by using theδ∗+s+

∗
r

andδ∗ + s−
∗

i to define new slacks for use in the corresponding additive model. Hence we
find that this extension of the additive model provides both estimates of inefficiency in each
input and output and, simultaneously, provides a measure of the stability of these estimates.

Theseδ∗ ≥ 0 also play a role analogous to the optimal values of radial measures in
models which use radial measures of efficiency. They differ from the radial measure
models, however, because theδ∗ values appear in both input and output constraints whereas
the radial measures apply only to one constraint set or the other, in mutually exclusive
fashion.

We can gain still further insight by extending the analysis to efficient DMUs via the
following theorem.

THEOREM2 DMUo is (Pareto-Koopmans) efficient if and only if bothδ∗ and all slacks are
zero in (2).

Proof. Suppose the conditions specified in the theorem hold. Ifδ∗ = 0 in stage 1 of (2)
then (3) and (4) are equivalent. Hence if all slacks are zero in (3) they will also be zero in
(4) in which case DMUo is efficient by Definition 2. Now suppose DMUo is efficient. It
follows that all slacks andδ∗ must be zero in (3). For, if this were not the case, then all
slacks at zero could not be optimal for DMUo in (4). The latter outcome, however, would
contradict the efficient status assumed for DMUo.

THEOREM3 Some slacks must be zero in an optimum for (3).

Proof. Suppose an optimum could be secured with all slacks positive in (3). Then we
could set1∗ = min{s−∗i , s+

∗
r | i = 1, . . . ,m; r = 1, . . . , s} > 0. Subtracting1∗ > 0 from

all slacks yields a new set of non-negative slacks with at least one equal to zero. Adding
the thus subtracted1∗ to the previous value yields a solution to (3)δ∗ +1∗ > δ∗ and this
contradicts the hypothesis thatδ∗ was optimal for the stage 1 use of (2).

COROLLARY 1 If δ∗ = 0 in (2) and some slacks are not zero in (3) thenDMUo is weakly
efficient.

COROLLARY 2 If δ∗ = 0 in (1) thenDMUo is at least weakly efficient.

Remark. We might note that the additive models (unlike radial models) do not distinguish
between weak efficiency and technical inefficiency. Here, too, however, an extension is
effected as is made clear by theorem 2 and corollary 1.

We can now sharpen these results by noting thatδ∗ = 0 identifies DMUo as being on
a boundary of the production possibility set because this means that no change in data is
needed to move DMUo to efficient (or weakly efficient) status. However, the converse is
not true. To see that this is so refer to the point G in Figure 2 which is on the boundary
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of the production possibility set where congestion occurs.2 However, a non-zero radius of
stability at least as large as for H is needed before a change from inefficient to efficient
status will occur for G. This follows because, via Theorem 1, we know that C will be the
efficient point used to evaluate H when (2) is used.

We conclude this part of our discussion of this approach to evaluating the stability of
results for inefficient DMUs with the following comment.

Comment. For further insight into the meaning ofδ∗ in these various uses, we return to the
weighting system in (1) and use this information to reformulate (2) in the following manner

maxδ + ε
(

s∑
r=1

s+r /d
+
r +

m∑
i=1

s−i /d
−
i

)
subject to

δ = −yro

d+r
+

n∑
j=1

yr j λj

d+r
− s+r

d+r
, r = 1, . . . , s

δ = xio

d−i
−

n∑
j=1

xi j λj

d−i
− s−i

d−i
, i = 1, . . . ,m

1=
n∑

j=1

λj , (5)

with all variables constrained to be non-negative. As is evident from this formulation, theδ∗

values are stated as ratios relative to the positive weights used for each constraint. Henceδ∗

is a “dimension free” ratio: The weights are thus to be stated in the units that are pertinent
to each constraint. The preceding analysis in this part of our paper simplified matters
by assuming a special case—viz., that these weights all had unity values. Nevertheless
our theorems and interpretations continue to apply when this equal weight assumption is
dropped—although they will need to be stated in more complex manners for this general
formulation. This can be made clear by assuming that (5) is stated in terms of new data and
new variables defined as follows,

ŷr j = yr j

d+r
, x̂i j = xi j

d−i

ŝ+r =
s+r
d+r
, ŝ−i =

s−i
d−i

for i = 1, . . . ,m; r = 1, . . . , s; j = 1, . . . ,n. The thus defined new variables and data
could then be used in the above theorems.

5. Metric Approaches for Efficient DMUs

The above model is directed to cases where “improvements” can be effected in the data for
an inefficient DMU until it changes to an efficient performer. We now turn in the opposite
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direction and examine the “worsenings” needed in the inputs and outputs of an efficient
DMU that will cause data changes sufficient to characterize it as an inefficient performer.

For this purpose Charneset al.(1996) reverse the signs associated withδ in (1), and also
reverse the objective as is done in the following model,

minδ

subject to

yro =
n∑

j=1, j 6=0

yr j λj − s+r + δ, r = 1, . . . , s

xio =
n∑

j=1, j 6=0

xi j λj + s−i − δ, i = 1, . . . ,m

1=
n∑

j=1, j 6=0

λj (6)

Here, again, all variables are constrained to be nonnegative. All variables and data are
defined as before but in this casej 6= o refers to the omission of the efficient DMUo which
is being analyzed. This is needed because without this omission the result will always be
unstable as defined by Charneset al., (1992a, 1996)3 viz.,

Definition 3. The coordinates of the point associated with an efficient DMU will always
have both efficient and inefficient points within a radius ofε > 0, however small the value
of ε. Any point with this property is “unstable.”

This property, we may note, is not confined to points associated with efficient DMUs. For
instance, as previously noted, point A in Figure 1 has this property since a slight variation
to the left will change its status from inefficient to efficient. In any case, a solution,δ∗,
provides a radius in Chebyshev norm with a value that is to be minimally attained before
an efficient DMU is changed to inefficient status.

Remark. In this case we are again reverting to the assumption thatd+r = d−i = 1; ∀i, r for
the formulation used by Charnes et al. (1992a, 1996). Slack variables introduced into the
objective when moving from (1) to (2) are omitted because, by assumption, we are dealing
with efficient points.

To see what is involved we can assume that B in Figure 2 is the efficient point to be
considered. Removal of B as required for (6) would result in a new frontier taking form
with the line segment connecting A and C.δ∗ would then represent the radius of stability
with its value determined by the Chebyshev norm that is being used for this purpose. This,
in turn, would be associated with the square (or unit ball) that is used to represent this norm
in the manner we previously discussed for F.

As can be seen, there are additional questions that flow from this analysis. For instance,
removal of B in this fashion would evidently affect the stability radius for F as well as other
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points. This raises a question as to how such further effects are to be treated in a stability
analysis. Later in this paper this topic is dealt with in a manner that resolves the issue of
how to select a DMU for analysis. Here we only need to note that Charneset al. (1992a,
1996) recommend using the above formulations with their associated`∞ metric only as the
start for a sensitivity analysis. They then go on to study other metrics which can provide
additional results.

6. Solvability

We now move to issues of “solvability” which arise with the removal of DMUo, the efficient
DMU for which the above stability analysis is designed. As noted earlier in this paper,
Andersen and Petersen (1993) also adopt an approach which omits the DMUo under analysis
in a manner analogous to (3) which they use for ranking DMUs by reference to a property
that they refer to as “superefficiency.” Unlike the Andersen and Petersen approach, the
Charneset al.(1992a, 1996) formulations do not encounter issues of solvability when such
a DMUo omission is made. (See Thrall (1996) and Zhu (1999) for detailed treatments of this
topic of solvability.) The Charneset al. (1992a, 1996) approach always has a minimizing
solution which identifies a closest efficient point in the reduced set of solutions (possibly
vacuous) which remains after DMUo is deleted.

The need for a proof of this last statement was made apparent by comments elicited during
the presentation of this paper in the 6th European Workshop on Efficiency and Productivity
so we proceed to the following demonstration: We first restate (6) in the following equivalent
form

minδ

subject to

δ ≥ yro −
n∑

j=1, j 6=o

yr j λj , r = 1, . . . , s

δ ≥ −xio +
n∑

j=1, j 6=o

xi j λj , i = 1 . . . ,m

1=
n∑

j=1, j 6=o

λj , (7)

where all variables are constrained to be non-negative. The solution to this problem may
be formulated in “min max” terms as follows,

δ∗ = min
λ≥0

max
i,r

{{
yro −

n∑
j=1, j 6=o

yr j λj | r = 1, . . . s

}
,

{
n∑

j=1, j 6=o

xi j λj − xio | i = 1, . . . ,m

}
,0

}
(8)

with all variables non-negative and
∑n

j=1, j 6=o λj = 1.
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Such a solution always exists. To see that this is so, we rewrite (6) in the following form,

minδ

subject to

δ − s+r = yro −
n∑

j=1, j 6=o

yr j λj , r = 1, . . . , s

δ − s−i = −xio +
n∑

j=1, j 6=o

xi j λj , i = 1, . . . ,m

1=
n∑

j=1, j 6=o

λj

0≤ δ, λj , s
−
i , s

+
r ∀i, j, r. (9)

The slacks andδ are always of opposite sign in the constraints. Hence we can always obtain
a solution to this problem in the following manner. If any of the first set ofm+s constraints
on the right is positive, we setδ equal to the maximum of these values and use the slacks to
attain the equalities required in (6). If none of the expressions on the right are positive we
setδ = 0 and again use the slacks to obtain the required equalities.

From this development we see that (6) always has a solution. Although unbounded above,
the values of the slacks andδ are bounded below so no trouble is encountered in the direction
toward which the objective in (6) is oriented. Theλ values are bounded in all directions
by the conditions

∑n
j=1, j 6=o λj = 1, λj ≥ 0 ∀ j, j 6= o. Hence troubles from this quarter

are not encountered with either the max or min operators in the preceding expressions. We
have therefore proved the following

THEOREM4 The problem (6) always has a finite optimum value which establishes a radius
of stability.

Remark. The above approach also establishes a new way of ranking DMUs by reference to
their radii of stability. Unlike Andersen and Petersen (1993) it does not encounter problems
of solvability. See Thrall (1996) and Zhu (1999). This principle of ranking can also be
applied to inefficient DMUs (in reverse order) and this extension is also not available in the
Andersen-Petersen approach since “amounts” of inefficiency may be coming from different
facets and hence involve comparisons with the different peer groups used to generate these
facets. See Charneset al.(1989) on the need for explicitly specifying the principle on which
a ranking in DEA may be based and see Dula and Hickman (1997) for additional reasons
why the Andersen-Petersen approach cannot be used for ranking.

7. Multiplier Model Approaches

There is a potential for interactions with otherδ∗ values when radii of stability for efficient
points are being determined. Recall, for instance, the effect on theδ∗ for F in Figure 2 that
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was noted in our discussion of the way the radius of stability for B was to be determined
from (6). The issue of how to determine which DMUs should be of interest in such analyses
also arises. Both of these topics are addressed in the approach we now describe which uses
a different class of models and relies on “multiplier model” variables which are dual to the
“envelopment model” variables used in the metric approaches we have been discussing.

The approach to which we now turn allows all data for every DMU to be varied simulta-
neously. Pioneered by Thompson, Dharmapala and Thrall (1994) this method of stability
analysis was developed further in Thompsonet al.(1996) from which we draw the following
dual pair of linear programming problems,

Envelopment Model Multiplier Model

minimizeθ,λ θ maximizeu,v z= uyo

subject to subject to

Yλ ≥ yo u ≥ 0

θxo − Xλ ≥ 0 v ≥ 0

λ ≥ 0 uY− vX ≤ 0

θ unrestricted vxo = 1.

(10)

HereY, X andy0, xo are data matrices and vectors of outputs and inputs, respectively, and
λ,u, v are vectors of variables (λ: a column vector;u andv: row vectors).θ , a scalar, which
can be positive, negative or zero in the envelopment model is the source of the condition
vxo = 1 which appears at the bottom of the multiplier model.

No allowance for nonzero slacks is made in the objective of the envelopment model. Thus
thepositivity requirement associated with the commonly used non-Archimedean element,
ε, is absent from both members of this dual pair. Thompsonet al.refer to Charnes, Cooper
and Thrall (1991) to justify the omission of this non-Archimedean element. For present
purposes, however, we only need to note that the sensitivity analyses we will now be
considering are centered around the set, E, of efficient extreme points and these points
always have a unique optimum with nonzero slack solutions for the envelopment (but not
the multiplier) model. See Charnes, Cooper, Thrall (1986, 1991).

In contrast to the use of additive models in Charneset al. (1992a, 1996), we now turn
to the radial models, as in the problem on the left in (10). Also in contrast to the previous
approach the analysis used by Thompsonet al. (1994, 1996) is carried forward via the
multiplier models on the right in (10). This makes it possible to exploit the fact that the
valuesu∗, v∗ which are optimal for the DMU being evaluated will remain valid over some
(generally positive) range of variation in the data.4

Thompsonet al. (1994, 1996) exploit the latter property by defining a new vectorw =
(u, v) which they use to define a functionhj (w) as follows,

hj (w) = f j (w)

gj (w)
=
∑s

r=1 ur yr j∑m
i=1 vi xi j

. (11)

Next, let

ho(w) = max
j=1,...,n

hj (w) (12)
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so that

ho(w) ≥ hj (w), ∀ j . (13)

We now note that (11) returns matters to the nonlinear version of the CCRratio form as
introduced in Charnes, Cooper and Rhodes (1978). Hence, we need not be concerned with
continued satisfaction of the conditionvxo = 1 in (10) when we begin to study variations
in the data since that condition emerges only after the ratio form is transformed to its linear
programming equivalent.

When an optimalw∗ does not satisfy (13), the DMUo being evaluated is said to be “ra-
dial inefficient.” The term is appropriate because this means thatθ∗ < 1 will occur in the
envelopment model. The full panoply of relations between the CCR ratio, multiplier and en-
velopment models is thus brought into play without any need for extensive recomputations.

Among the frontier points (for whichθ∗ = 1), attention is directed by Thompsonet al.
(1994, 1996) to “extreme efficient points.” In particular, attention is centered on points in
the set which are referred to as E (= extreme efficient) in Charnes, Cooper and Thrall (1986,
1991). For points in this set we have

ho(w
∗) > hj (w

∗) ∀ j 6= o, (14)

for some multiplierw∗. That is, DMUo will be extreme efficient if and only if there exists
a vectorw∗ for which this strict inquality holds.

How thisw∗ is to be selected will be discussed below. Here we only note that this (strict)
inequality will generally remain valid over some range of variation in the data. Thus, the
remarks made when introducing (11) are intended to apply to this strict inequality. In more
detail, the strict inequality in (14) assumes the form

ho(w
∗) =

∑s
r=1 u∗r yro∑m
i=1 v

∗
i xio

>

∑s
r=1 u∗r yr j∑m
i=1 v

∗
i xi j
= hj (w

∗) ∀ j 6= o, (15)

which means that DMUo is more efficient than any other DMUj and hence will be rated as
fully efficient by DEA, and will remain so over some range of data variation.

Thompson,et al. (1994, 1996) employ a ranking principle which they formulate as:

“If DMU o is more efficient than all of the other DMUj relative to the vectorw∗,
then DMUo is said to be top ranked.”

Advantage is taken of the properties noted for (14) and (15) by holdingw∗ fixed while the
data are varied. DMUo is then said to continue to be “top ranked” as long as (14) and (15)
continue to hold.

Thompsonet al. (1996) carry out experiments in which the data are allowed to vary
in different ways. Among these possibilities we examine only the following one: the
outputs will all be decreased and the inputs will all be increased by a stipulated amount
(or percentage). This same treatment is accorded to all of the DMUs which are efficient
(including those which are not extreme efficient). For the other DMUj (which are all
inefficient) the reverse adjustment is made: All outputs are increased and all inputs are
decreased. In this way the value of the ratio in (15) will be decreased for both DMUo in



SENSITIVITY AND STABILITY ANALYSIS IN DEA 233

Table 1.Data for a sensitivity analysis.

E-Efficient∗ Not Efficient

DMU 1 2 3 4 5 6

Output: y 1 1 1 1 1 1
Input: x1 4 2 1 2 3 4
Input: x2 1 2 4 3 2 4

∗E-Efficient= Extreme Point Efficient

Table 2.Initial solutions.

DMU1 DMU2 DMU3

DMU hj (w
1) hj (w

2) hj (w
3)

1 1.000 0.800 0.400
2 0.714 1.000 0.714
3 0.400 0.800 1.000
4 0.500 0.800 0.667
5 0.667 0.800 0.550
6 0.357 0.500 0.357

(10) and for the other efficient DMUs while the ratios for the otherDMUj will be increased.
Continuing in this manner a reversal can be expected to occur at some point in (14)—in
which case DMUo will no longer be “top ranked,”—which means that it will then lose the
status of being fully (or extreme) DEA efficient.

Table 1 taken from Thompsonet al. (1994) will be used to illustrate the procedure in a
simple manner by varying the data only for the inputsx1, x2.

Table 2 records the initial solutions obtained by applying the multiplier model in (10) to
each of DMU1, DMU2 and DMU3. In conformance with (14) and (15), these values show
that all 3 of these DMUs are extreme efficient. (See the remark made immediately after
(14)). These solutions show DMU1, DMU2 and DMU3 to be top ranked in their respective
columns. See the remark following (14).

The fact that gaps occur between the top and other ranks, as reflected in Table 2, suggests
that some range of data variation can be undertaken without changing this top-ranked status
in any of these three columns. To validate this last statement we follow Thompsonet al.
(1996) and holdw∗ = (u∗, v∗) fixed while we introduce 5% increases in each ofx1 and
x2 for DMU1, DMU2 and DMU3. Simultaneously, we decrease these inputs by 5% for the
other (inefficient) DMUs.

This produces the results shown in Table 3. With these variations in the coefficients of
w∗, changes in thehj (w

∗) values will occur, as can be seen in Table 3. However, even with
these changes in data, each of DMU1, DMU2 and DMU3 maintain their “top ranked” status
and hence continue to be DEA fully efficient. Nor is this the end of the line. Continuing
with these 5% increments-decrements, while holdingw∗ fixed, Thompsonet al. (1994)
report that a 15% increment-decrement is needed for a first displacement in which DMU2 is
replaced by DMU4 and DMU5. Continuing further, a 20% increment-decrement is needed
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Table 3. 5% increments and decre-
ments.

DMU1 DMU2 DMU3

DMU hj (w
1) hj (w

2) hj (w
3)

1 0.952 0.762 0.381
2 0.680 0.952 0.680
3 0.381 0.762 0.952
4 0.526 0.842 0.702
5 0.702 0.842 0.552
6 0.376 0.526 0.376

to replace DMU1 with DMU4 and, finally, still further incrementing and decrementing is
needed to replace DMU3 with DMU4 as top ranked.

This robust behavior is guaranteed only for a solution which satisfies the “Strong Com-
plementary Slackness Condition” (SCSC) for which a positive gap will appear like ones
between the top and second rank shown in every column of Table 2. In fact, the choice of
w∗ can affect the degree of robustness as reported in Thompsonet al.(1996) where use of an
interior point algorithm produces aw∗ closer to the “analytic center” and this considerably
increases the degree of robustness for the above example.

Computation Note. Following a recommendation by a referee, we illustrate the compu-
tations by using the dual variable values reported in Thompsonet al. (1994, p. 397) for
evaluating DMU1

h1(w
1) = µ∗

v∗1x11+ v∗2x12
= 1

0.4+ 0.6
= 1.000

h2(w
1) = µ∗

v∗1x21+ v∗2x22
= 1

0.2+ 1.2
= 0.714

h3(w
1) = µ∗

v∗1x31+ v∗2x32
= 1

0.1+ 2.4
= 0.400

h4(w
1) = µ∗

v∗1x41+ v∗2x42
= 1

0.2+ 1.8
= 0.500

h5(w
1) = µ∗

v∗1x51+ v∗2x52
= 1

0.3+ 1.2
= 0.667

h6(w
1) = µ∗

v∗1x61+ v∗2x62
= 1

0.4+ 2.4
= 0.357

These are the values recorded underhj (w
1) in Table 2. The values in Table 3 are obtained by

noting that a 5% increase in input values for DMUs 1, 2, 3 will reduce theirhj (w
1) values to

approximately 95%(≈ 1/1.05) of their previous level. Conversely, a 5% decrement in input
values for DMUs 3, 4, 5 will increase theirhj (w

1) values by a factor of 1.05 (≈ 1/0.95).
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Finally, we should note that all of the dual variable values are positive. See the discussion
of the strong complementary slackness condition in the next section of this paper.

8. Strong Complementarity

The “strong complementary slackness condition” (SCSC) plays a central role in the analysis.
Hence we briefly recall it in the following form:

Envelopment Slacks Multiplier Model
Multiplier Variables Envelopment Variables

s−
∗

i v∗i = 0
λ∗j t
∗
j = 0 (16.1)

s+
∗

r u∗r = 0
and

s−
∗

i + v∗i > 0
λ∗j + t∗j > 0 (16.2)

s+
∗

r + u∗r > 0

wherei = 1, . . . ,m; r = 1, . . . , s; j = 1, . . . ,n.
These variables have all been defined except thet∗j which represent the slacks associated

with the first j = 1, . . . ,n constraints in the multiplier model. The expressions in (16.1)
represent necessary conditions for optimum solutions to (10). Hence these conditions will
be satisfied by any of the algorithms that are ordinarily used in linear programming. This
is not the case for (16.2), however, for which special algorithms like those described in
Thompsonet al.(1996) may be useful and, we might note, Appendix C of Charnes, Cooper
and Thrall (1991) provides a procedure for finding whether DMUj is efficient and, if so, it
also provides a finite sequence of optimal basic solutions whose average is SCSC.

Our interest now centers on the expressions on the left in (16). Note that (16.1) requires
at least one (and possibly both) of the variables to be zero. Condition (16.2) requires that at
least one variable must be positive. It follows that exactly one will be positive. However,
here the analyses are based on efficient extreme points. The solutions associated with such
points are always unique with all slacks zero in the envelopment model. Hence only the
multiplier variables will be positive. It follows that they will all be positive as was the case
for the example of DMU1, above, when SCSC is satisfied. Finally, we might also note that
Thompsonet al.(1994, 1996) refer to this as “full dimensionality” in the resulting solutions
where their interest centers on the multiplier variables.

The algorithms used seek to maximize the resulting gap between the first and second DMU.
That is, the objective seeks to maximize the value ofdo(wo) in the following expression,

do(wo) = ho(wo)− hk(wo)

where

hk(wo) = max
j 6=o

hj (wo). (17)

See the discussion of (14), above.
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Thompsonet al.(1996) refer to this as the case of “DEA Center Solutions.” An algorithm
needed to ensure the attainment of this DEA Center remains to be developed. To move in
this direction they utilize an interior point algorithm (adapted to a DEA context) in order to
compute a SCSC solution called the “analytic center” which maximizes the product of the
variables. Thus, the fact that it is SCSC maximizes the number of positive variables and the
analytic center chooses from this set a solution which maximizes their product. The belief
(or hope) is that this will generally be close to the DEA center

Comment. Efficient points which are not extreme can be expressed as convex combinations
of efficient extreme points. Hence they will have a zero radius of stability. Such points are
of subsidiary interest, however, since they do not enter into the evaluation of other points
when the simplex or other extreme point methods of solution are employed (as is the case
for most DEA computer codes).

In discussing the algorithms employed by Gonzalez-Limaet al. (1996) we might note
that necessary as well as sufficient conditions are to be satisfied by the resulting “top
rank” characterizations. For further discussion of necessary and sufficient conditions for
dual multipliers see Boljuncic and Neralic (1999) who also treat this topic, and supply an
algorithm for the case in which the data for one DMUj = DMUo are worsened (so its
efficiency is decreased) and the data for all other DMUs are improved (so their efficiencies
are increased). See also Boljuncic (1998).

9. Further Developments

The line of work we now follow returns to envelopment models and in this sense extends
the work of Charneset al.(1996) to identify allowable variations in every input and output
for every DMU before a change in status occurs for the DMUo being analyzed. This shift
from “multiplier” to “envelopment” models helps to bypass possible concerns which can
arise from the different degrees of sensitivity that are associated with alternate optima and
different algorithms that might be employed.5

The developments for sensitivity analyses we now discuss were initiated by Zhu (1996b)
and subsequently extended by Seiford and Zhu (1998b). However, we start our discussion
of this path of development (which revolves around the uses of envelopment models) with
the later models due to Seiford and Zhu (1998b) because the earlier paper by Zhu (1996b)
was shown to be vulnerable to counter example by Boljuncic (1999). Hence we start with
the following version of the CCR model as formulated in Seiford and Zhu (1998b),

β∗ = minβ

subject to
n∑

j=1, j 6=0

xi j λj ≤ βxio, i ∈ I

n∑
j=1, j 6=0

xi j λj ≤ xio, i /∈ I
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n∑
j=1, j 6=0

yr j λj ≥ yro, r = 1, . . . , s

β, λj ≥ 0. (18)

Here the seti ∈ I consists of inputs where sensitivity is to be examined andi /∈ I represents
inputs where sensitivity is not of interest.

Seiford and Zhu use this model to determine ranges of data variation when inputs are
worsened for DMUo in each of itsxio and improved for thexi j of every DMUj, j = 1, . . . ,n
in the seti ∈ I . We sketch the development by introducing the following formulation to
determine the range of admissible variations,

n∑
j=1, j 6=o

xi j

δ
λj ≤ βδxio, i ∈ I

where

1≤ δ ≤ β∗ (19)

Now assume that we want to alter these data to new valuesx̂io ≥ xio and x̂i j ≤ xi j . To
examine this case we use

n∑
j=1, j 6=o

x̂i j λj ≤ β x̂io

where

x̂io = xio + δxio − xio = xio + (δ − 1)xio

x̂i j = xi j

δ
= xi j + xi j

δ
− xi j = xi j −

(
δ − 1

δ

)
xi j (20)

for every j = 1, . . . ,n in the seti ∈ I .
Thus(δ− 1) represents the proportionalincreaseto be allowed in eachxio and(δ− 1)/δ

represents the proportionaldecreasein eachxi j , j 6= o. As proved by Seiford and Zhu, the
range of variation that can be allowed forδ without altering the efficient status of DMUo is
given in the following

THEOREM 5 (Seiford and Zhu)If 1 ≤ δ ≤ √β∗ thenDMUo will remain efficient. That is,
any value ofδ within this range of proportional variation for both the xio and xi j will not
affect the efficient status ofDMUo.

Hereδ is a parameter with a value to be selected by the user. The theorem asserts that
no choice ofδ within the indicated range will cause DMUo to be reclassified as inefficient
when thex̂io andx̂i j defined in (20) are substituted in (18) because the result will still give
β∗ ≥ 1.

The lower limit of δ ≥ 1 is needed to ensure that consideration is being given to both
input worsenings for DMUo and input improvements for the DMUj , j 6= o. If the upper
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limit is breached a value ofβ∗ < 1 will be achieved when substutions are effected from
(20) into (18). DMUo will then be moved from efficient to inefficient status.

Seiford and Zhu supply a similar development for outputs and then join the two in the
following model which permits simultaneous variations in inputs and outputs,

γ ∗ = minγ

subject to
n∑

j=1, j 6=0
xi j λj ≤ (1+ γ )xio, i ∈ I

n∑
j=1, j 6=0

xi j λj ≤ xio, i /∈ I

n∑
j=1, j 6=0

yr j λj ≥ (1− γ )yro, r ∈ S

n∑
j=1, j 6=0

yr j λj ≥ yro, r /∈ S

λj ≥ 0, j = 1, . . . ,n; j 6= 0; γ unrestricted. (21)

wherei ∈ I represents the input set for which data variations are to be considered and
r ∈ S represents the output set for which data variations are to be considered. Usingδ to
represent allowable input variations andτ to represent allowable output variations, Seiford
and Zhu supply the following

THEOREM 6 (Seiford and Zhu)If 1 ≤ δ ≤ √1+ γ ∗ and
√

1− γ ∗ ≤ τ ≤ 1 thenDMUo

will remain efficient.

As Seiford and Zhu (1998b) note, forI = {1, . . . ,m} and S = {1, . . . , s} (21) is the
same as the CCR correspond used in Charneset al. (1992, 1996). Seiford and Zhu have
thus generalized these results from Charneset al. to allow simultaneous variations in all
inputs and outputs for every DMU in the setsi ∈ I and r ∈ S in a manner that now
provides an alternative to the earlier work by Thompsonet al. (1994, 1996) which we
discussed in the preceding section. We do not further discuss (21) and the same is true for
the following model—which Seiford and Zhu use to treat the case where absolute (rather
than proportional) changes in the data are of interest,

u∗ = minu

subject to
n∑

j=1, j 6=0

xi j λj ≤ xio + u, i ∈ I

n∑
j=1, j 6=0

xi j λj ≤ xio, i /∈ I
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Table 4. Comparison of Seiford and Zhu
with Thompson-Thrallet al.

DMU1 DMU2 DMU3

(go, g) (41, 29) (12, 11) (41, 29)
SCSC1 20 14 20
SCSC2 32 9 32

Source: Seiford and Zhu (1998).
Herego = δ − 1 andg = δ−1

δ
. See (20).

n∑
j=1, j 6=0

yr j λj ≥ yro − u, r ∈ s

n∑
j=1, j 6=0

yr j λj ≥ yro, r /∈ s

n∑
j=1, j 6=0

λj = 1

u, λj ≥ 0, ∀ j . (22)

This can be regarded as an extension of (6) in which variations are to be undertaken only
for subsets of the data as in, for instance, the constraints with non-zero slacks and with the
thus identified subset varying for different DMUs.

We now turn to Table 4 which Seiford and Zhu use to compare their approach with the
Thompsonet al. (1996) approach. To interpret this Table we note that all results represent
percentages in the allowed data variations by applying these two different approaches to the
data of Table 1 given in section 7, above. The values in the rows labeled SCSC1 and SCSC2
are secured from two alternate optima which Thompsonet al.(1996) report as satisfying the
strong complementary slackness condition when only the inputs listed in Table 1 are varied.
The parenthesized values ofgo andg at the top of Table 4 are the percentages reported by
Seiford and Zhu as having been obtained by applying (18) to these same data

Examples. Using the data from Table 1 in section 7 we omit DMU1 from the right hand side
in order to generate the following model from (18) to determine what Charnes, Rousseau
and Semple (1996) refer to as a “Radius of Classification Preservation” (RCP) for DMU1,

β∗ = minβ

subject to

4β = 2λ2+ 1λ3+ 2λ4+ 3λ5+ 4λ6+ s−1
1β = 2λ2+ 4λ3+ 3λ4+ 2λ5+ 4λ6+ s−2
1= λ2+ λ3+ λ4+ λ5+ λ6− s+. (A)
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With all variables constrained to be non-negative this hasλ∗2 = 1, ŝ−
∗

1 = 6, β∗ = 2 as a
solution.

A proportional increase of 100% or more is evidently required to change DMU1 from
efficient to inefficient status as evidenced byβ∗ = 2. To confirm this we replace (A) with
the following formulation

θ∗ = minθ

subject to

8θ = 2λ2+ 1λ3+ 2λ4+ 3λ5+ 4λ6+ s−1
2θ = 2λ2+ 4λ3+ 3λ4+ 2λ5+ 4λ6+ s−2
1= λ2+ λ3+ λ4+ λ5+ λ6− s+

0≤ λ2, . . . , λ6, s
−
1 , s

−
2 , s

+. (B)

This has a solution withθ∗ = 1, λ∗2 = 1, s−
∗

1 = 6. In the terminology of Andersen
and Petersen (1993), DMU1 loses its “super-efficiency” status. With these input values
it is possible for the other DMUs to produce its one unit of output without any input
augmentation.

Following Seiford-Zhu we now chooseδ2 = β∗ = 2 in (A). That is, we are choosing the
upper limit allowed by theorem 5 of Seiford and Zhu, as given after (19) and (20) and then
dividing through byδ = √β∗ ≈ 1.41 to replace (B) with

θ∗ = minθ

subject to

5.64θ = 1.41λ2+ 0.71λ3+ 1.41λ4+ 2.13λ5+ 2.84λ6+ s−1
1.41θ = 1.41λ2+ 2.84λ3+ 2.13λ4+ 1.41λ5+ 2.84λ6+ s−2
1= λ2+ λ3+ λ4+ λ5+ λ6− s+. (C)

which has a solution withλ∗2 = 1, s−
∗

1 = 4.23, θ∗ = 1 and all other variables zero.6

The 100% RCP (= Radius of Classification Preservation) for DMU1 in (A) is replaced
by only a 41% augmentation of the inputs for DMU1 in (C). The latter value obtained from
the Seiford-Zhu approach is, however, accompanied by a 29% (= 1− 1.41/2) × 100%
improvement in the inputs of DMU2. Both adjustments are adverse to DMU1 but its
sensitivity is nevertheless increased in comparison to the stationary frontier used in the
Charneset al.approaches.

The results from Seiford and Zhu also seem to be more robust than is the case for
Thompson, Thrall and their associates—see Thompsonet al. (1994, 1996)—at least for
DMU1 and DMU3. This is not true for DMU2, however, where a 14% worsening of its
inputs and 14% improvement in the inputs of the non-efficient DMUs is required under the
Thompsonet al. (1996) approach before DMU2 will change from efficient to inefficient in
its status. However, the Seiford and Zhu approach shows that DMU2 will retain its efficient
status until at least a 12% worsening of its 2 inputs occurs along with an 11% improvement
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in these same inputs for the inefficient DMUs. A range of 12%+ 11%= 23% does not
seem to be far out of line with the 2× 14%= 28% or the 2× 9% = 18% reported by
Thompsonet al. (1996). Moreover, as Seiford and Zhu note, their test is more severe.
They match their worsening of DMU2’s inputs with improvement of the inputs ofall of
the other DMUs—including the efficient DMU1 and DMU2—whereas Thompson, Thrall,
et al. worsen the inputs ofall of the efficient DMUs and improve the inputs of only the
inefficient DMUs.7

Comment. In a further extension of Seiford and Zhu (1998b), it is shown by Zhu (1999)
that data perturbations associated withδ can be decomposed into components. As a result,
DEA sensitivity analysis can be done (i) in a general situation where data for a test DMU
and data for the remaining DMUs are allowed to vary simultaneously and unequally and
(ii) in a worst-case scenario where the efficiency of the test DMU is deteriorating while the
efficiencies of the other DMUs are improving.

There are many more developments in these approaches by Zhu and Seiford, Charneset
al. and Thompsonet al. but they cannot be covered here. We do need to note, however,
that Seiford and Zhu extend their results to deal with the infeasibility that can occur when
the sums to be considered omit thej = o being evaluated.8 They show that infeasibility
means that the DMUo being tested will preserve its efficient status in the presence of infinite
increases in its inputs and infinite decreases in its outputs.9

10. Summary and Conclusion

Thompsonet al. (1994) found results from the DEA efficiency analysis to be robust with
respect to efficient and inefficient DMUs when DEA was applied to data on Kansas farms
and Illinois coal mines. This same result was obtained in the Thompsonet al.(1996) study
of independent oil companies. Zhu (1996a) similarly reported robust results in his study
of a Chinese textile company as did Seiford and Zhu (1998b, 1998c) in use of data on the
efficiencies of Chinese cities.10 Hopefully, continuing work along these lines will help point
the way toward substantive generalizations about the robustness properties (or lack thereof)
in DEA.

As we have already observed, the progress in the sensitivity analysis studies we discussed
has effected improvements in two important directions. First, this work has moved from
evaluating one input or one output at a time in one DMU and has proceeded into more general
situations where all inputs and outputs for all DMUs can be simultaneously varied. Second,
the need for special algorithms and procedures (other than those already incorporated in
DEA computer codes) has been reduced or eliminated at least in the formulations by Seiford
and Zhu but not in the approaches of Thompsonet al. See also the references in Neralic
(1997) for references to the algorithmic developments which he has undertaken. See also
Boljuncic (1998).

Altering the focus to points which are weakly efficient, as in Seiford and Zhu, assumes
that non-zero slacks are of no consequence. This avoids the problem of alternate optima but
raises other problems in its place. One could, of course, move to additive models with their
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associated̀1 metrics as is done in Charneset al. to treat such non-zero slacks. However,
as discussed in Thrall (1996), this approach brings with it the problem of a possible lack of
invariance of solutions when the units used to measure inputs or outputs are changed.

There is also a need to extend the Seiford and Zhu analysis (or something like it) to
provide measures of stability for inefficient as well as efficient DMUs. A sharpening
of results would also be welcome. For instance, unlike the approaches which we have
discussed in Thompsonet al. (1994, 1996), the models and methods used by Seiford and
Zhu identify only the conditions under which DMUo loses its efficiency status. That is,
unlike Thompsonet al., Seiford and Zhu do not identify which DMUs effect the indicated
displacements.

The work discussed in this paper deals only with changes of classification from efficient
to inefficient status (orvice versa). Extensions might well be effected that move from these
qualitative characterization in order to determine the differing amounts of inefficiencies
for the inefficient DMUs affected by such changes in classification. (A good start in this
direction is made in Thompsonet al. (1996) but more is needed.)

By and large, these analytical approaches to sensitivity have restricted attention to issues
of technical efficiency. A start toward other kinds of analyses is to be found in the paper by
Seiford and Zhu (1999) which analyses the sensitivity of returns to scale characterizations
in DEA. Extensions of sensitivity analyses to other types of efficiency (such as allocative
efficiency and congestion) are yet to be made.

Another topic of interest revolves around effects that might be associated with deleting or
adding DMUs. Wilson (1995) utilizes the approaches of Andersen-Petersen (1993) to study
the effects of removing DMUs in order to determine “influential observations” (= DMUs).
The effects of adding DMUs might also be studied with respect to their effects on efficiency
scores. (See Thrall (1989) for a good start on this topic.) Also of interest would be the effects
of simultaneously adding and deleting DMUs—such as occur with the “window analyses”
discussed in Chapter IX of Cooper, Seiford and Tone (1999).11 This could also be extended
in yet another manner as is in Cherchye, Kuosmanen and Post (2000) who assign probability
measures to the maximum number of DMUo that can be removed from a data set without
altering the efficiency status of any specified DMUo. In yet another direction, Charnes,
Cooper and Rhodes (1980) employ general gamma distributions to study the statistical
behavior of efficiency scores—which include effects that accompany the projections of
original observations onto efficiency frontiers when it is desired to distinguish between the
efficiency of programs and the efficiency with which the programs were managed.

We might also turn to questions of sample size, or number of observations, which we
discussed in our introduction. One would like theorems with accompanying “substantive”
characterizations of stability like those reported in Banker (1993) for the statistical con-
sistency of DEA results with varying sample size or, alternatively, one could proceed with
bootstrap methods like those discussed in Simar and Wilson (2000).

More, and more varied, applications of these ideas could help to establish whether DEA
results are empirically robust and, perhaps, identify conditions where the results are likely
to be sensitive. See Raab, Kotamrajv and Haage (2000) for a recent addition to the uses of
these ideas we referenced earlier in empirical work reported in Thompsonet al.(1994, 1996)
and Zhu (1996b). Improved algorithms along lines like those we covered in our discussion
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of the Thompsonet al. (1994, 1996) methods and the Gonzales-Limaet al. (1996) studies
and, of course, exploitation of algorithms like those reported or referenced in Neralic (1997)
could help to expand the number and variety of such applications, especially if this work
were incorporated in some of the DEA computer codes that are now being extensively used
in a wide variety of applications.

Comment. There are also technical problems of possible interest which include relations
of duality that remain to be explored. One possibility along these lines was called to our
attention by a referee who noted that the multiplier values sum to≤ 1 for efficient DMUs
in the dual to (5) and they sum to≥ 1 for inefficient DMUs in the dual to (2). Reference
to (1) suggests that this can be regarded as an extension of the condition that the input (or
output) multipliers sum to 1 when applied to the inputs or outputs as in the last expression
on the right in (10) but it brings with it added properties that remain to be explored.

There are, of course, numerous other possibilities for further progress and new problems
to be dealt with. Some of this further progress is evidenced by other papers that were
presented at the workshop in Copenhagen. See Boljuncic and Neralic (1999). Progress is
also possible on topics that we have not covered. For instance, we have not covered topics
like sensitivity to changes in the models used12 or the input and output variables used.13 It
is not possible to cover all of such work in a single paper, but additional approaches to other
problems in sensitivity analysis may be found in the references. See, e.g., the discussion of
“envelopment maps” for use in sensitivity analysis that is described in Bullaet al. (2000)
as well as the treatment for the effects of adding variables in Thrall (1989).
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Notes

1. As cited in Charneset al.(1992a), use of this concept is adapted from Zlobec, Gardner and Ben Israel (1981).

2. See Cooperet al. (2000) for a use of such boundaries to obtain evaluations of the efficiency with which
congestion is managed in Chinese production in situations where such congestion is a result of governmental
policies directed to ensuring employment of a huge and growing labor force.

3. This omission of DMUo is also used in Andersen and Petersen (1993) as discussed in the next section.

4. The ranges within which these dual variable values do not change form part of the printouts in standard linear
programming computer codes.
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5. An additional alternative is to combine the two approaches (i.e., envelopment model and multiplier model
approaches) as discussed in Boljuncic and Neralic (1999).

6. λ∗5 = 1, s−
∗

1 = 3.51 is also optimal withθ∗ = 1.

7. The fact that Seiford and Zhu deal only with “weak efficiency” is not pertinent here because DMU1, DMU2
and DMU3 are all strongly efficient.

8. Seiford and Zhu (1998a) note that the possibility of infeasibility is not confined to the case when convexity is
imposed. It can also occur when certain patterns of zeros are present in the data.

9. Refinements are evidently needed to exclude the possibility of negative outputs but we do not treat this topic
here.

10. These data were taken from Charnes, Cooper and Li (1989).

11. See also the discussion of “envelopment maps” which, as discussed in Cooper, Seiford and Tone (1999), can
provide a start toward such analyses.

12. For an example see Ahn and Seiford (1993).

13. See the study by R. D. Banker, H. Chang and W. W. Cooper (1996) which deals with the effects of misspecified
variables in DEA.
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