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Abstract: Data envelopment analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs). This
tool has been utilized by a number of authors to examine two-stage processes, where all the outputs from the first stage are the only
inputs to the second stage. The current article examines and extends these models using game theory concepts. The resulting models
are linear, and imply an efficiency decomposition where the overall efficiency of the two-stage process is a product of the efficiencies
of the two individual stages. When there is only one intermediate measure connecting the two stages, both the noncooperative and
centralized models yield the same results as applying the standard DEA model to the two stages separately. As a result, the efficiency
decomposition is unique. While the noncooperative approach yields a unique efficiency decomposition under multiple intermediate
measures, the centralized approach is likely to yield multiple decompositions. Models are developed to test whether the efficiency
decomposition arising from the centralized approach is unique. The relations among the noncooperative, centralized, and standard
DEA approaches are investigated. Two real world data sets and a randomly generated data set are used to demonstrate the models
and verify our findings. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 55: 643–653, 2008
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1. INTRODUCTION

Data envelopment analysis (DEA), introduced by Charnes
et al [2], is an approach for identifying best practices of peer
decision making units (DMUs), in the presence of multiple
inputs and outputs. In many cases, DMUs may also have inter-
mediate measures. For example, Seiford and Zhu [8] use a
two-stage process to measure the profitability and marketabil-
ity of US commercial banks. In their study, profitability is
measured using labor and assets as inputs, and the outputs
are profits and revenue. In the second stage for marketabil-
ity, the profits and revenue are then used as inputs, while
market value, returns, and earnings per share are used as
outputs. Chilingerian and Sherman [5] describe another two-
stage process in measuring physician care. Their first stage
is a manager-controlled process with inputs including regis-
tered nurses, medical supplies, and capital and fixed costs.
These inputs generate the outputs or intermediate measures
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(inputs to the second stage), including patient days, quality of
treatment, drug dispensed, among others. The outputs of the
second (physician controlled) stage include research grants,
quality of patients, and quantity of individuals trained, by
specialty.

Seiford and Zhu [8] use the standard DEA approach, which
does not address potential conflicts between the two stages
arising from the intermediate measures. For example, the
second stage may have to reduce its inputs (intermediate mea-
sures) to achieve an efficient status. Such an action would,
however, imply a reduction in the first stage outputs, thereby
reducing the efficiency of that stage. To address that conflict
issue, Chen and Zhu [3] and Chen et al. [4] present a linear
DEA type model where the intermediate measures are set as
decision variables. However, their individual stage efficiency
scores do not provide information on the overall performance
and best-practice of the two-stage process.

The current study seeks alternative ways to (i) address
the conflict between the two stages caused by the interme-
diate measures, and (ii) provide efficiency scores for both
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individual stages and the overall process. We model the
two-stage processes via concepts adopted from noncooper-
ative and cooperative games. For example, suppose a DMU
consists of a manufacturer and a retailer. In such a setting,
traditionally the manufacturer holds manipulative power and
acts as a leader, and the retailer is treated as a follower in mod-
eling noncooperative supply chains [6]. In a similar manner,
our noncooperative approach assumes that one of the stages
is the leader that seeks to maximize its DEA efficiency. Then
the efficiency of the other stage (the follower) is calculated
subject to the leader-stage maintaining its DEA efficiency.
The leader stage can be viewed as being more important than
the other stage(s) in improving its efficiency.

In a more cooperative environment, the manufacturer and
retailer may wish to work together in determining price,
order quantity, and other factors to achieve maximum sav-
ings and/or profit for the manufacturer-retailer chain. Our
specific approach herein assumes that initially both stages’
efficiency scores are maximized simultaneously, while deter-
mining a set of optimal (common) weights assigned to the
intermediate measures. It is pointed out that this approach is
not specifically in line with conventional cooperative game
theory logic, where players would jointly decide upon a mul-
tiplier space that is acceptable. We refer to our approach as
“centralized”, in that it is the combined stages that are of
interest (see, e.g., Cachon [3]). We then apply a second order
model (see Appendix) to arrive at a “cooperative” efficiency
decomposition that is fair to both players. In this latter sense
our combined centralized/cooperative approach is in the spirit
of cooperative games.

It is shown that both the non-cooperative and central-
ized approaches yield an efficiency decomposition, where
the overall efficiency of the two-stage process is a product of
those of the two individual stages. Note that such an efficiency
decomposition is not available in the standard DEA approach
of Seiford and Zhu [8], and the multi-stage approaches of
Chen and Zhu [3].

The current study further shows that when there is only one
intermediate measure, both the noncooperative and central-
ized approaches yield the same results, and unique efficiency
decomposition occurs, as is the case in applying the stan-
dard DEA model to each stage separately. Although the
noncooperative approach yields a unique efficiency decom-
position under multiple intermediate measures, the central-
ized approach may yield multiple efficiency decomposi-
tions. Models are developed to test whether the centralized
approach to efficiency decomposition is unique.

The rest of the article is organized as follows. Section
2 presents the generic two-stage process. We then present
in Sections 3 and 4 our noncooperative (or leader-follower)
model, and the centralized model. It is shown how to test
for uniqueness of efficiency decomposition. Section 5 dis-
cusses the relations among the standard DEA model and

Figure 1. Two-stage process.

the noncooperative and centralized approaches. The issue of
unique efficiency decomposition is also studied. In Section
6 our models are then applied to three data sets to verify our
findings. One data set is from Wang et al. [9], and has only one
intermediate measure. The models are then applied to the data
set of Seiford and Zhu [8] with two intermediate measures. It
is shown that the efficiency decomposition is unique. Finally,
to further examine differences that can occur between out-
comes from the noncooperative and centralized approaches, a
randomly generated data set is examined. Conclusions follow
in Section 7.

2. TWO-STAGE PROCESSES

Consider a generic two-stage process as shown in Fig. 1,
for each of a set of n DMUs. Using the notions in Chen and
Zhu [3], we assume each DMUj (j = 1, 2, . . . , n) has m

inputs xij , (i = 1, 2, . . . , m) to the first stage, and D outputs
zdj , (d = 1, 2, . . . , D) from that stage. These D outputs then
become the inputs to the second stage and will be referred to
as intermediate measures. The outputs from the second stage
are yrj , (r = 1, 2, . . . , s).

For DMUj we denote the efficiency for the first stage as e1
j

and the second as e2
j . On the basis of the radial (CRS) DEA

model of Charnes et al. [2], we define

e1
j =

∑D
d=1 wdzdj∑m
i=1 vixij

and e2
j =

∑s
r=1 uryrj∑D
d=1 w̃dzdj

(1)

where vi , wd , w̃d , and ur are unknown non-negative weights.
It is noted that wd can be set equal to w̃d , and in many if not
most situations this would be an appropriate course of action.
In the case examined herein we make the assumption that the
“worth” or value accorded to the intermediate variables is the
same regardless of whether they are being viewed as inputs
or outputs.

Clearly, one can apply two separate DEA analyses to the
two stages as in Seiford and Zhu [8]. One criticism of such an
approach is the inherent conflict that arises between these two
analyses. For example, suppose the first stage is DEA efficient
and the second stage is not. When the second stage improves
its performance (by reducing the inputs zdj via an input-
oriented DEA model), the reduced zdj may render the first
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stage inefficient. This indicates a need for a DEA approach
that provides for coordination between the two stages.

Before presenting our models, it is useful to point out
that given the individual efficiency measures e1

j and e2
j , it

is reasonable to define the efficiency of the overall two-stage
process either as 1

2 (e1
j + e2

j ) or e1
j • e2

j . If the input-oriented
DEA model is used, then we should have e1

j ≤ 1 and e2
j ≤ 1.

The above definition ensures that the two-stage process is
efficient if and only if e1

j = e2
j = 1.

Finally, if we define ej =
∑s

r=1 uryrj∑m
i=1 vixij

as the two-stage overall

efficiency, our models imply ej = e1
j • e2

j at optimality.

3. NONCOOPERATIVE MODEL

One form of a noncooperative game is characterized by the
leader-follower assumption. (The term noncooperative game
is used to characterize either leader-follower situations, or
normal form/ simultaneous game situations. In the game the-
ory literature, the leader-follower paradigm is also referred
to as the Stackelberg model, borrowed from the notion of
Stackelberg games). For example, consider a case of nonco-
operative advertising between a manufacturer (leader) and a
retailer (follower). The manufacturer, if assumed to be the
leader, determines its optimal brand name investment and
local advertising allowance, based on an estimation of the
local advertising that will be undertaken by the retailer to
maximize its profit. The retailer, as a follower on the other
hand, based on the information from the manufacturer, deter-
mines the optimal local advertising cost, to maximize its profit
[7].

In a similar manner, if we assume that the first stage is the
leader, then the first stage performance is more important,
and the efficiency of the second stage (follower) is computed,
subject to the requirement that the leader’s efficiency stays
fixed.

Adopting the convention that the first stage is the leader,
and the second stage, the follower, we calculate the efficiency
for the first stage, using the CCR model [2]. That is, we solve
for a specific DMUo the liner programming model

e1∗
o = Max

D∑
d=1

wdzdo

s.t.
D∑

d=1

wdzdj −
m∑

i=1

vixij ≤ 0 j = 1, 2, . . . ., n

m∑
i=1

vixio = 1

wd ≥ 0, d = 1, 2, . . . , D; vi ≥ 0, i = 1, 2, . . . , m.
(2)

Note that since model (2) is the standard (CCR) DEA model,
then e1∗

o is the regular DEA efficiency score.
Once we obtain the efficiency for the first stage, the sec-

ond stage will only consider those variables wd that maintain
e1
o = e1∗

o . Or, in other words, the second stage now treats∑D
d=1 wdzdj as the “single” input subject to the restriction

that the efficiency score of the first stage remains at e1∗
o . The

model for computing e2
o, the second stage’s efficiency, can be

expressed as

e2∗
o = Max

∑s
r=1 Uryro

Q
∑D

d=1 wdzdo

s.t.

∑s
r=1 Uryrj

Q
∑D

d=1 wdzdj

≤ 1 j = 1, 2, . . . ., n

D∑
d=1

wdzdj −
m∑

i=1

vixij ≤ 0 j = 1, 2, . . . ., n

m∑
i=1

vixio = 1

D∑
d=1

wdzdo = e1∗
o

Ur , Q, wd , vi ≥ 0,

r = 1, 2, . . . , s; d = 1, 2, . . . , D; i = 1, 2, . . . , m (3)

Note that in model (3), the efficiency of the first stage is
set equal to e1∗

o . Let ur = Ur

Q
, r = 1, 2, . . . , s. Model (3) is

then equivalent to the following linear model

e2∗
o = Max

(
s∑

r=1

uryro

)
/e1∗

o

s.t.
s∑

r=1

uryrj −
D∑

d=1

wdzdj ≤ 0 j = 1, 2, . . . ., n

D∑
d=1

wdzdj −
m∑

i=1

vixij ≤ 0 j = 1, 2, . . . ., n

m∑
i=1

vixio = 1

D∑
d=1

wdzdo = e1∗
o

wd ≥ 0, d = 1, 2, . . . , D; vi ≥ 0,

i = 1, 2, . . . , m; ur ≥ 0, r = 1, 2, . . . , s (4)

In a similar manner, if we assume the second stage to be
the leader, we first calculate the regular DEA efficiency (e2o

o )

for that stage, using the appropriate CCR model. Then, one
solves the first stage (follower) model, with the restriction
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that the second stage score, having already been determined,
cannot be decreased from that value.

We finally note that in (4), e1∗
o • e2∗

o = ∑s
r=1 u∗

r yro at opti-

mality, with
∑m

i=1 v∗
i xio = 1. That is, e1∗

o • e2∗
o =

∑s
r=1 u∗

r yro∑m
i=1 v∗

i xio
.

(A similar result is true, if the leader/follower definition is
reversed). This indicates that our non-cooperative approach
implies an efficiency decomposition for the two-stage DEA
analysis. That is, the overall efficiency is equal to the product
of the efficiencies of individual stages. Further, note that in
the first-stage leader case, e1∗

o and e2∗
o are optimal values to

linear programs. Therefore, such an efficiency decomposition
is unique. The same is true of the decomposition following
from the second-stage leader case. It is pointed out, however,
that these two decompositions may not be the same.

4. CENTRALIZED MODEL

An alternative approach to measuring the efficiency of
the two stage process is to view them from a centralized
perspective, and determine a set of optimal weights on the
intermediate factors that maximizes the aggregate or global
efficiency score (as would be true where the manufacturer
and retailer jointly determine the price, order quantity, etc.
to achieve maximum profit [7]). In other words, the central-
ized approach is characterized by letting wd = w̃d in (1), and
the efficiencies of both stages are evaluated simultaneously.1

Generally, the model for maximizing the average of e1
o and

e2
o is a non-linear program. We note, however, that because of

the assumption of wd = w̃d in (1), e1
o • e2

o becomes
∑s

r=1 uryro∑m
i=1 vixio

.

Therefore, instead of maximizing the average of e1
o and e2

o,
we have

ecentralized
o = Max e1

o • e2
o =

∑s
r=1 uryro∑m
i=1 vixio

s.t. e1
j ≤ 1 and e2

j ≤ 1 and wd = w̃d . (5)

Model (5) can be converted into the following linear program

ecentralized
o = Max

s∑
r=1

uryro

s.t.
s∑

r=1

uryrj −
D∑

d=1

wdzdj ≤ 0 j = 1, 2, . . . ., n

D∑
d=1

wdzdj −
m∑

i=1

vixij ≤ 0 j = 1, 2, . . . ., n

1 Note that in the end, a common set of weights is assigned to
both stages in our non-cooperative game approach. However, in
that approach, e1

o and e2
o are not optimized simultaneously.

m∑
i=1

vixio = 1

wd ≥ 0, d = 1, 2, . . . , D; vi ≥,

i = 1, 2, . . . , m; ur ≥, r = 1, 2, . . . , s (6)

Model (6) gives the overall efficiency of the two-stage
process. Assume the above model (6) yields a unique solu-
tion. We then obtain the efficiencies for the first and second
stages, namely

e1,Centralized
o =

∑D
d=1 w∗

dzdo∑m
i=1 v∗

i xio

=
D∑

d=1

w∗
dzdo and

e2,Centralized
o =

∑s
r=1 u∗

r yro∑D
d=1 w∗

dzdo

. (7)

If we denote the optimal value to model (6) as ecentralized
o ,

then we have ecentralized
o = e1,Centralized

o • e2,Centralized
o . Note that

optimal multipliers from model (6) may not be unique, mean-
ing that e1,Centralized

o and e2,Centralized
o may not be unique. To

test for uniqueness, we can first determine the maximum
achievable value of e1,Centralized

o via

e1+
o = Max

D∑
d=1

wdzdo

s.t.
s∑

r=1

uryro = ecentralized
o

D∑
d=1

wdzdj −
m∑

i=1

vixij ≤ 0 j = 1, 2, . . . ., n

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0 j = 1, 2, . . . ., n

m∑
i=1

vixio = 1

wd ≥ 0, d = 1, 2, . . . , D; vi ≥ 0,

i = 1, 2, . . . , m; ur ≥ 0, r = 1, 2, . . . , s (8)

It then follows that the minimum of e2,Centralized
o is given by

e2−
o = ecentralized

o

e1+
o

.

The maximum of e2,Centralized
o , which we denote by e2+

o , can
be calculated in a manner similar to the above, and the mini-
mum of e1,Centralized

o is then calculated as e1−
k = ecentralized

o /e2+
o .

Note that e1−
o = e1+

o if and only of e2−
o = e2+

o . Note also that
if e1−

o = e1+
o or e2−

o = e2+
o , then e1,Centralized

o and e2,Centralized
o

are uniquely determined via model (6). If e1−
o �= e1+

o or
e2−
o �= e2+

o , then presumably some flexibility exists in setting
values for e1,Centralized

o and e2,Centralized
o . A legitimate reason for

taking advantage of such flexibility is one of cooperation and
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fairness. That is, in the spirit of cooperative games, once the
optimal value for the centralized score is determined, it is rea-
sonable to search for a decomposition that is as fair as possible
to both parties. The Appendix provides a procedure to obtain
an alternative decomposition of e1,Centralized

o and e2,Centralized
o .

5. RELATIONS AND UNIQUE EFFICIENCY
DECOMPOSITION

In this section, we discuss the relationships among the
above developed noncooperative and centralized models,
and the standard DEA approach. We show that under the
condition of one intermediate measure, the noncooperative,
centralized and regular DEA approaches yield the same
results.

Let θ1
o and θ2

o be the (CCR) efficiency scores for the two
stages. That is, for a specific DMUo, (i) θ1

o is the DEA effi-
ciency based upon inputs of xio and outputs of zdo and (ii) θ2

o

is the DEA efficiency based upon inputs of zdo and outputs
of yro.

We first consider a special case of one intermediate
measure. We have

THEOREM 1: If there is only one intermediate measure,
then e1∗

o = θ1
o and e2∗

o = θ2
o regardless of the assumption of

whether the first stage is a leader or follower, where e1∗
o and

e2∗
o are obtained via our noncooperative approach.

PROOF: Suppose the first stage is a leader. Recall that
model (1) is the standard DEA model for the first stage.
Therefore, e1∗

o = θ1
o . We next prove e2∗

o = θ2
o .

Consider model (3), which now becomes

e2∗
o = max

∑s
r=1 Uryro

Qwzo

s.t.

∑s
r=1 Uryrj

Qwzj

≤ 1 j = 1, 2, . . . ., n

wzj −
m∑

i=1

vixij ≤ 0j = 1, 2, . . . ., n

m∑
i=1

vixio = 1

wzo = e1
o

Ur , Q, w, vi ≥ 0, r = 1, 2, . . . , s; i = 1, 2, . . . , m (9)

Note that w = e1∗
o

zo
. Letting Q′ = Q(e1∗

o /zo), model (9) is
equivalent to

e2∗
o = max

∑s
r=1 Uryro

Q′zo

s.t.

∑s
r=1 Uryrj

Q′zj

≤ 1 j = 1, 2, . . . ., n

(
e1∗
o /zo

)
zj −

m∑
i=1

vixij ≤ 0 j = 1, 2, . . . ., n

m∑
i=1

vixio = 1

Ur , Q′, vi ≥ 0, r = 1, 2, . . . , s; i = 1, 2, . . . , m (10)

Note that values of vi do not affect the optimal value to
model (10), indicating that (e1∗

o /zo)zj − ∑m
i=1 vixij ≤ 0

and
∑m

i=1 vixio = 1 are redundant. As a result, model (10)
becomes the standard DEA model for the second stage, hence
e2∗
o = θ2

o .
Similarly, it can be shown that the theorem is true when

the first stage is a follower. �

Thus, Theorem 1 indicates that when there is only one
intermediate measure, the non-cooperative approach yields
the same result as applying the standard DEA model to each
stage.

Under the condition of multiple intermediate measures, we
note that the feasible region of model (6) contains the feasi-
ble region of model (4). Thus, the optimal value to model (6)
must be greater than or equal to e1∗

o • e2∗
o arising from model

(4). This can be summarized as

THEOREM 2: For a specific DMUo, ecentralized
o ≥ e1∗

o •e2∗
o ,

where ecentralized
o is the optimal value to model (6), and e1∗

o

and e2∗
o are obtained via the noncooperative (leader-follower)

approach.

In the presence of a single intermediate measure, Theo-
rem 1 shows that e1∗

o and e2∗
o are respectively their DEA

efficiency scores, hence are the maximum achievable effi-
ciencies. Therefore, based upon Theorems 1 and 2, we must
have

THEOREM 3: In the presence of a single intermediate
measure, ecentralized

o = θ1
o • θ2

o , with θ1
o = e1,Centralized

o and
θ2
o = e2,Centralized

o , where θ1
o and θ2

o are the (CCR) efficiency
scores for the two stages, respectively, and e1,Centralized

o and
e2,Centralized
o are defined in (7).

When there is a single intermediate measure, Theorem 3
indicates that

1. non-cooperative and centralized approaches yield the
same result as applying the standard DEA model to
each stage, and

2. the efficiency decomposition under the model (6) is
unique.

We finally note the following is true with respect to
the relations between the non-cooperative and centralized
approaches.
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Table 1. IT data set.

Fixed assets IT budget No. of employees Deposits Profit Fraction of loans
DMU ($ billion) ($ billion) (thousand) ($ billion) ($ billion) recovered

1 0.713 0.15 13.3 14.478 0.232 0.986
2 1.071 0.17 16.9 19.502 0.34 0.986
3 1.224 0.235 24 20.952 0.363 0.986
4 0.363 0.211 15.6 13.902 0.211 0.982
5 0.409 0.133 18.485 15.206 0.237 0.984
6 5.846 0.497 56.42 81.186 1.103 0.955
7 0.918 0.06 56.42 81.186 1.103 0.986
8 1.235 0.071 12 11.441 0.199 0.985
9 18.12 1.5 89.51 124.072 1.858 0.972

10 1.821 0.12 19.8 17.425 0.274 0.983
11 1.915 0.12 19.8 17.425 0.274 0.983
12 0.874 0.05 13.1 14.342 0.177 0.985
13 6.918 0.37 12.5 32.491 0.648 0.945
14 4.432 0.44 41.9 47.653 0.639 0.979
15 4.504 0.431 41.1 52.63 0.741 0.981
16 1.241 0.11 14.4 17.493 0.243 0.988
17 0.45 0.053 7.6 9.512 0.067 0.98
18 5.892 0.345 15.5 42.469 1.002 0.948
19 0.973 0.128 12.6 18.987 0.243 0.985
20 0.444 0.055 5.9 7.546 0.153 0.987
21 0.508 0.057 5.7 7.595 0.123 0.987
22 0.37 0.098 14.1 16.906 0.233 0.981
23 0.395 0.104 14.6 17.264 0.263 0.983
24 2.68 0.206 19.6 36.43 0.601 0.982
25 0.781 0.067 10.5 11.581 0.12 0.987
26 0.872 0.1 12.1 22.207 0.248 0.972
27 1.757 0.0106 12.7 20.67 0.253 0.988

THEOREM 4:

1. e1,Centralized
o ≥ e1∗

0 when the second stage is the leader,
2. e2,Centralized

o ≥ e2∗
o when the first stage is the leader.

3. θ2
o (= e2∗

o ) ≥ e2,Centralized
o , and θ1

o (= e1∗
o ) ≥

e1,Centralized
o always hold, regardless of which stage

is the leader.

6. APPLICATION

In this section, we consider three data sets. The first data
set has a single intermediate measure that was first used in
Wang et al. [9], and then in Chen and Zhu [3] in examining
the IT impact on productivity. The second data set consists
of 30 top US commercial banks and has two intermediate
measures [8]. The final data set is randomly generated using
the RAND() function in Excel.

6.1. Information Technology

Table 1 presents the data set, which consists of 27
observations on firms in the banking industry. The inputs
for the first stage are fixed assets, numbers of employees, and

IT investment. The intermediate measure is the deposits gen-
erated. The second stage outputs are profits and the fraction
of loans recovered.2

Since there is only one intermediate measure, both the non-
cooperative (whichever is the leader), and centralized results
are identical, with a unique efficiency decomposition. Table 2
reports the results. In this case, the scores in columns 2 and 3
are also the DEA efficiencies for stage 1 and stage 2, respec-
tively. Column 4 displays the centralized score obtained in
(6), which is equal to the product of the related scores in
columns 2 and 3. These results verify Theorems 1 and 3.

The last column under the heading θo reports the DEA
efficiency when the intermediate measures are ignored, i.e.,
θo is a DEA score with inputs being fixed assets, IT bud-
get and employees, and outputs being profit and fraction
of loans recovered. It can be seen that θo = 1 for DMU4,
while both stages are (DEA) inefficient. This points to the
fallacy of applying the DEA model directly, and ignoring the
intermediate measures.

2 For detailed discussion on the data, the reader is referred to Wang
et al. [9].
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Table 2. Results for IT data.

DMU e1
o e2

o e1
o • e2

o θo

1 0.6388 0.7459 0.4764 0.7371
2 0.6507 0.7819 0.5087 0.8026
3 0.5179 0.7730 0.4003 0.6415
4 0.5986 0.7142 0.4275 1
5 0.5556 0.7236 0.4020 0.9125
6 0.7599 0.5758 0.4376 0.6436
7 1 0.5758 0.5758 1.0000
8 0.5352 0.8250 0.4415 0.6827
9 0.6249 0.6347 0.3966 0.4870

10 0.4963 0.7188 0.3567 0.5359
11 0.4945 0.7188 0.3555 0.5329
12 0.6685 0.5949 0.3977 0.8780
13 0.9487 0.8582 0.8141 0.9133
14 0.5880 0.5783 0.3400 0.4997
15 0.6582 0.6035 0.3972 0.5809
16 0.6646 0.6434 0.4276 0.6226
17 0.7177 0.7877 0.5653 1
18 1 1.0000 1.0000 1
19 0.8144 0.5926 0.4826 0.7260
20 0.6934 1.0000 0.6934 1
21 0.7067 0.9936 0.7022 1
22 0.7942 0.6408 0.5089 1
23 0.7802 0.6993 0.5456 1
24 0.9300 0.7135 0.6636 0.8934
25 0.6270 0.6516 0.4085 0.7424
26 1 0.5152 0.5152 0.7895
27 1 0.5644 0.5644 1

6.2. Top US Commercial Banks

Seiford and Zhu [8] examine the performance of the US
commercial banks in 1995 via a two-stage production process
defined in terms of profitability and marketability. The inputs
to the first stage are numbers of employees, assets ($millions)
and equity ($million). The intermediate measures are profit
($millions) and revenue ($millions). Outputs from the second
stage are market value ($millions), earnings per share ($) and
returns to the investors (%). Table 3 displays the data for the
top 30 banks, and Table 4 reports the results of the applica-
tion of model (6). The last column shows, for each DMU, the
DEA score for the overall process when employees, assets
and equity are used as the inputs and profit and revenue are
used as the outputs. Conceptually, such a DEA score is similar
to the e1∗

o •e2∗
o in the non-cooperative approach or ecentralized

o in
the centralized approach of model (6). However, the relation
θo = θ1

o • θ2
o does not always hold. This can be seen by using

the scores reported in columns 2 and column 6. Column 2
represents the DEA scores for the first stage and column 6
represents the DEA scores for the second stage.

To test the uniqueness of our efficiency decomposition
under the centralized approach, we also calculate e1+

o (model
(8)) and e2+

o . Our results indicate that e1−
o = e1+

o and
e2−
o = e2+

o for all the DMUs. Therefore, e1,Centralized
o and

e2,Centralized
o defined in (7), are uniquely determined via model

(6) in our case.
Finally note that the results in Table 4 also verify our Theo-

rems 2 and 4. Note also that ecentralized
o = e1∗

o •e2∗
o holds for all

the banks, where e1∗
o and e2∗

o represent the efficiency scores
for the two stages when the first stage is treated as the leader.
This may indicate that the first stage or the profitability stage
is more important.

6.3. Randomly Generated Data Set

One is tempted to conclude from the previous example that
there might be a direct connection between the centralized
optimal score and that arising from the results of treating
stage 1 as the leader. To gain further insights, a randomly
generated set of data was created as displayed in Table 5.
The outcomes from the various analyses appear in Table 6.
Among the 27 DMUs, 15 show centralized scores that exceed
the corresponding aggregate scores in both the stage 1 leader
and stage 2 leader cases. For the remaining 12 DMUs, the
following are the outcomes:

1. For three of the DMUs (8, 10, and 12), the stage 1
leader scores and decomposition match those of the
centralized analysis, but differ from the stage 2 leader
results;

2. For six of the DMUs (1, 3, 7, 19, 20, and 27), the
stage 2 leader results match those of the centralized
analysis, but differ from those of the stage 1 leader;

3. For the three DMUs 14, 16, and 23, all three analyses
produce the same results.

This latter set of outcomes appears to point to the general
unpredictability of any connection between the results from
the centralized approach and those from the two approaches
involving a leader and a follower.

7. CONCLUSIONS

In many DEA situations, DMUs may take the form of
multiple stages with intermediate measures. It has been rec-
ognized that the existing DEA approaches, including the
standard DEA models, do not appropriately address such
multi-stage structures. This paper presents alternative ways
to address the conflict between stages caused by the inter-
mediate measures, and at the same time provide efficiency
scores for both individual stages and the overall process.
Our noncooperative and centralized approaches show that
the overall efficiency of the two-stage process is the product
of efficiencies of the two stages.
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Table 3. US commercial bank.

Bank Employees Assets Equity Revenue Profits Market value Earnings Returns

1 Citicorp 85, 300 256, 853 19, 581 31, 690 3, 464 33221.7 7.21 66.1
2 BankAmerica Corp. 95, 288 232, 446 20, 222 20, 386 2, 664 27148.6 6.49 69.4
3 NationsBank Corp. 58, 322 187, 298 12, 801 16, 298 1, 950 20295.9 7.13 59.7
4 Chemical Banking Corp. 39, 078 182, 926 11, 912 14, 884 1, 805 16971.3 6.73 70.5
5 J.P. Morgan & Co. 15, 600 184, 879 10, 451 13, 838 1, 296 15003.5 6.42 49.4
6 Chase Manhattan Corp. 33, 365 121, 173 9, 134 11, 336 1, 165 12616.4 5.76 82.4
7 First Chicago NBD Corp. 35, 328 122, 002 8, 450 10, 681 1, 150 12351.1 3.45 50
8 First Union Corp. 44, 536 131879.9 9043.1 10582.9 1430.2 16, 815 5.04 39.9
9 Banc One Corp. 46, 900 90, 454 8197.5 8970.9 1277.9 14807.4 2.91 54.9

10 Bankers Trust New York Corp. 14, 000 104, 000 5, 000 8, 600 215 5252.4 2.03 28.3
11 Fleet Financial Group 30, 800 84432.2 6364.8 7919.4 610 10428.7 1.57 31.8
12 Norwest Corp. 45, 404 72134.4 5312.1 7582.3 956 12268.6 2.76 45.5
13 PNC Bank Corp. 26, 757 73, 404 5, 768 6389.5 408.1 9938.2 1.19 61.4
14 KeyCorp 28, 905 66339.1 5152.5 6, 054 825 8671.2 3.45 51.6
15 Bank of Boston Corp. 17, 881 47, 397 3, 751 5410.6 541 5310.1 4.55 84.7
16 Wells Fargo & Co. 19, 700 50, 316 4, 055 5, 409 1, 032 11342.5 20.37 52.8
17 Bank of New York Co. 15, 850 53, 685 5, 223 5, 327 914 10101.5 4.57 69.9
18 First Interstate Bancorp 27, 200 58, 071 4, 154 4827.5 885.1 12, 138 11.02 108.5
19 Mellon Bank Corp. 24, 300 40, 129 4, 106 4, 514 691 7476.7 4.5 83.8
20 Wachovia Corp. 15, 996 44981.3 3773.8 3755.4 602.5 7623.6 3.5 46.9
21 SunTrust Banks 19, 415 46471.5 4269.6 3740.3 565.5 7922.5 4.94 46.9
22 Barnett Banks 20, 175 41553.5 3272.2 3, 680 533.3 5774.9 5.3 59
23 National City Corp. 20, 767 36, 199 2, 921 3449.9 465.1 4912.2 3.03 33.9
24 First Bank System 13, 231 33, 874 2, 725 3328.3 568.1 8, 304 4.19 54.3
25 Comerica 13, 500 35469.9 2607.7 3112.6 413.4 4, 537 3.54 71.7
26 Boatmen’s Bancshares 17, 023 33703.8 2928.1 2996.1 418.8 4, 997 3.25 57.3
27 U.S. Bancorp 14, 081 31794.3 2, 617 2897.3 329 4865.1 2.09 66.8
28 CoreStates Financial Corp. 13, 598 29620.6 2379.4 2868 452.2 5, 788 3.22 52
29 Republic New York Corp. 4, 900 43881.6 3007.8 2859.6 288.6 3, 218 4.66 41.1
30 MBNA 11, 171 13228.9 1265.1 2565.4 353.1 6543.3 1.54 60.7

Table 4. US commercial bank results.

Stage 1 as the Leader Stage 2 as the Leader Centralized DEA

Bank θ1
o (= e1∗

o ) e2∗
o e1∗

o • e2∗
o e1O

o θ2
o (= e2O

o ) e1O

o • e2O

o e1,Centralized
o e2,Centralized

o eCentralized
o θo

1 1 0.4487 0.4487 0.8381 0.4859 0.4073 1 0.4487 0.4487 0.5991
2 0.6823 0.5326 0.3634 0.5935 0.5442 0.3230 0.6821 0.5327 0.3634 0.4522
3 0.7946 0.5305 0.4216 0.6858 0.5669 0.3888 0.7946 0.5305 0.4216 0.5320
4 0.8729 0.4896 0.4274 0.8171 0.5221 0.4267 0.8463 0.5050 0.4274 0.6146
5 1 0.6061 0.6061 1 0.6061 0.6061 1 0.6061 0.6061 1
6 0.8333 0.5016 0.4180 0.6898 0.5881 0.4056 0.8180 0.5110 0.4180 0.5675
7 0.7885 0.4997 0.3940 0.6624 0.5546 0.3674 0.7816 0.5042 0.3940 0.5252
8 0.7451 0.6371 0.4747 0.6634 0.6470 0.4292 0.7451 0.6371 0.4747 0.5850
9 0.7022 0.6388 0.4486 0.6654 0.6471 0.4306 0.7021 0.6389 0.4486 0.5159

10 1 0.3393 0.3393 0.3056 1 0.3056 0.4884 0.6946 0.3393 0.5017
11 0.7414 0.5608 0.4158 0.4731 0.7601 0.3596 0.6619 0.6282 0.4158 0.5285
12 0.7089 0.6406 0.4541 0.6648 0.6760 0.4494 0.6906 0.6576 0.4541 0.4593
13 0.6809 0.6557 0.4464 0.4062 1 0.4062 0.5843 0.7641 0.4464 0.5797
14 0.7139 0.5845 0.4173 0.6514 0.6002 0.3910 0.7131 0.5852 0.4173 0.4836
15 0.8808 0.7290 0.6421 0.5747 0.8608 0.4947 0.8469 0.7582 0.6421 0.8051
16 1 1 1 1 1 1 1 1 1 1
17 1 0.7144 0.7144 0.8542 0.7469 0.6381 1.0000 0.7144 0.7144 0.9700
18 0.8041 0.9917 0.7974 0.7974 1.0000 0.7974 0.7974 1.0000 0.7974 0.8813
19 0.7484 0.7804 0.5841 0.7080 0.8009 0.5670 0.7478 0.7811 0.5841 0.6623
20 0.7542 0.7844 0.5916 0.6594 0.7997 0.5273 0.7542 0.7844 0.5916 0.7471
21 0.6550 0.8661 0.5673 0.6063 0.8830 0.5354 0.6550 0.8661 0.5673 0.6623
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Table 4. (continued)

Stage 1 as the Leader Stage 2 as the Leader Centralized DEA

Bank θ1
o (= e1∗

o ) e2∗
o e1∗

o • e2∗
o e1O

o θ2
o (= e2O

o ) e1O

o • e2O

o e1,Centralized
o e2,Centralized

o eCentralized
o θo

22 0.6732 0.7718 0.5196 0.6308 0.8054 0.5081 0.6491 0.8005 0.5196 0.6114
23 0.6430 0.6182 0.3975 0.6115 0.6479 0.3962 0.6280 0.6330 0.3975 0.4034
24 0.8711 0.9478 0.8257 0.7476 0.9838 0.7355 0.8711 0.9478 0.8257 1
25 0.7403 1.0000 0.7403 0.7403 1 0.7403 0.7403 1 0.7403 0.9128
26 0.6345 0.8363 0.5306 0.6158 0.8368 0.5153 0.6345 0.8363 0.5306 0.6265
27 0.6573 0.9963 0.6549 0.6549 1 0.6549 0.6549 1.0000 0.6549 0.8121
28 0.7736 0.8011 0.6198 0.7399 0.8033 0.5943 0.7736 0.8011 0.6198 0.7171
29 0.8230 0.9834 0.8093 0.8093 1.0000 0.8093 0.8093 1 0.8093 1
30 1 1 1 1 1 1 1 1 1 1

Table 5. Randomly generated data set.a

DMU x1 x2 x3 z1 z2 z3 y1 y2

1 0.160533 0.461705 0.801963 0.406688 0.206037 0.439965 0.949366 0.916808
2 0.856448 0.609654 0.621833 0.157097 0.584966 0.539785 0.549246 0.631047
3 0.053146 0.509803 0.591925 0.814871 0.893295 0.196896 0.404961 0.586558
4 0.415682 0.729281 0.654994 0.280068 0.815275 0.626362 0.711695 0.482451
5 0.780034 0.228201 0.774622 0.641715 0.260856 0.368447 0.217347 0.626201
6 0.788877 0.89585 0.311125 0.709338 0.070128 0.321896 0.990062 0.2855
7 0.145599 0.496386 0.597429 0.313176 0.098118 0.372811 0.911683 0.507515
8 0.636588 0.060005 0.489479 0.901919 0.049167 0.530128 0.624024 0.279208
9 0.799036 0.130151 0.652046 0.34687 0.916859 0.780976 0.703579 0.817204

10 0.35652 0.051187 0.740171 0.01868 0.598429 0.132531 0.322513 0.418686
11 0.96692 0.783424 0.576451 0.934552 0.111523 0.524625 0.067739 0.04896
12 0.348914 0.32516 0.021103 0.87194 0.618316 0.069364 0.143042 0.658826
13 0.588182 0.802032 0.871989 0.076066 0.930698 0.423215 0.661049 0.390431
14 0.71487 0.001791 0.373654 0.597038 0.302935 0.918436 0.420139 0.009398
15 0.390041 0.991319 0.860601 0.213514 0.792131 0.664094 0.337214 0.539449
16 0.224625 0.873669 0.240125 0.759566 0.95913 0.65947 0.513231 0.022899
17 0.364733 0.985311 0.335471 0.971992 0.261091 0.317436 0.757609 0.715948
18 0.148532 0.792447 0.442971 0.692554 0.406036 0.401411 0.636992 0.598899
19 0.030093 0.298586 0.950891 0.181835 0.580099 0.152668 0.546692 0.61798
20 0.048855 0.430107 0.965306 0.537189 0.568998 0.072174 0.87554 0.70092
21 0.394998 0.453573 0.390144 0.208714 0.802642 0.594124 0.794968 0.242338
22 0.04861 0.598112 0.916754 0.713031 0.386939 0.309058 0.195411 0.072147
23 0.252245 0.331712 0.648642 0.334391 0.868483 0.60101 0.670012 0.304392
24 0.44217 0.879742 0.997697 0.829225 0.451481 0.507086 0.25146 0.092647
25 0.17037 0.210851 0.073873 0.0113 0.269678 0.305566 0.074505 0.481819
26 0.959086 0.801094 0.977649 0.328863 0.549756 0.324605 0.827717 0.605161
27 0.558997 0.844132 0.867018 0.083575 0.820318 0.317238 0.967138 0.366415
aThis data set was generated using the RAND() function in Excel.

Table 6. Results for randomly generated data set.

Stage 1 as the Leader Stage 2 as the Leader Centralized

DMU θ1
o (= e1∗

o ) e2∗
o e1∗

o • e2∗
o e1O

o θ2
o (= e2O

o ) e1O

o • e2O

o e1,Centralized
o e2,Centralized

o eCentralized
o

1 0.92987 0.21457 0.199523 0.647491 1.00000 0.647491 0.647491 1 0.647491
2 0.45941 0.35332 0.162318 0.201775 0.77230 0.155831 0.344674 0.616706 0.212562
3 1.00000 0.490794 0.490794 1 0.49079 0.490794 1 0.490794 0.490794
4 0.66141 0.228374 0.15105 0.343526 0.53783 0.184758 0.539179 0.484125 0.26103
5 0.53410 0.392592 0.209685 0.308399 0.72931 0.224919 0.453264 0.590856 0.267814
6 0.41674 0.397161 0.165514 0.284908 1.00000 0.284908 0.341368 0.840245 0.286833
7 0.84549 0.201584 0.170438 0.538628 1.00000 0.538628 0.538628 1 0.538628
8 1.00000 0.311359 0.311359 0.112017 1.00000 0.112017 1 0.311359 0.311359
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Table 6. (continued)

Stage 1 as the Leader Stage 2 as the Leader Centralized

DMU θ1
o (= e1∗

o ) e2∗
o e1∗

o • e2∗
o e1O

o θ2
o (= e2O

o ) e1O

o • e2O

o e1,Centralized
o e2,Centralized

o eCentralized
o

9 1.00000 0.366425 0.366425 0.584143 0.57335 0.334915 0.756948 0.50378 0.381335
10 1.00000 0.45104 0.45104 0.424668 1.00000 0.424668 1 0.45104 0.45104
11 0.50955 0.020148 0.010267 0.065641 0.08381 0.005502 0.428929 0.04091 0.017547
12 1.00000 0.952256 0.952256 0.794639 0.97802 0.777175 1 0.952256 0.952256
13 0.54011 0.148573 0.080245 0.068894 0.72645 0.050048 0.333706 0.560818 0.187148
14 1.00000 0.227884 0.227884 1 0.22788 0.227884 1 0.227884 0.227884
15 0.63741 0.083643 0.053315 0.252866 0.43715 0.11054 0.503621 0.387645 0.195226
16 1.00000 0.235413 0.235413 1 0.23541 0.235413 1 0.235413 0.235413
17 0.77963 0.079939 0.062323 0.295451 0.92127 0.27219 0.57082 0.560192 0.319769
18 0.86242 0.288998 0.249238 0.606217 0.56459 0.342265 0.705415 0.529013 0.373174
19 1.00000 0.904554 0.904554 0.913218 1.00000 0.913218 0.913218 1 0.913218
20 0.77559 0.0944 0.073216 0.710352 1.00000 0.710352 0.710352 1 0.710352
21 0.94837 0.183191 0.173732 0.343412 0.62127 0.213352 0.728933 0.528974 0.385586
22 1.00000 0.143574 0.143574 0.894135 0.15801 0.141285 0.97248 0.148567 0.144479
23 1.00000 0.403742 0.403742 1 0.40374 0.403742 1 0.403742 0.403742
24 0.58428 0.10096 0.058988 0.44589 0.14732 0.06569 0.516951 0.142868 0.073856
25 1.00000 0.763745 0.763745 0.716089 1.00000 0.716089 0.886921 0.865347 0.767495
26 0.28302 0.453736 0.128414 0.231684 0.83290 0.19297 0.235925 0.822569 0.194064
27 0.46713 0.197038 0.092042 0.274536 1.00000 0.274536 0.274536 1 0.274536

APPENDIX

In case of multiple optimal solutions that lead to nonunique of e1
o and e2

o

in the centralized approach, we develop the following procedure to achieve
a fair and alternative distribution of e1

o and e2
o between the two stages.

Suppose there exists a λ, such that

[
λe1−

o + (1 − λ)e1+
o

] × [
λe2−

o + (1 − λ)e2+
o

] = eo = eCentralized
o (11)

Let a = e1−
o e2−

o +e1+
o e2+

o −2eo, b = 2(eo −e1+
o e2+

o ) and c = e1+
o e2+ −eo,

then (11) becomes aλ2 + bλ + c = 0. On the basis of the related solution
λ∗, we can obtain a fair distribution of e1

o = λ∗e1−
o + (1 − λ∗)e1+

o and
e2
o = λ∗e2−

o + (1 − λ∗)e2+
o .

We next need to test whether there exist a set of weights that are related
to the above efficiency distribution. If not, we then find a set of weights and
efficiency distribution that is close to the above distribution.

Consider the following model

Max

∑D
d=1 Wdzd0∑m
i=1 Vixi0

s.t.

∑s
r=1 Uryr0∑m
i=1 Vixi0

= eCentralized
o∑s

r=1 Uryr0∑D
d=1 Wdzd0

≥ λ∗e2−
o + (1 − λ∗)e2+

o

∑D
d=1 Wdzdj∑m
i=1 Vixij

≤ 1, j = 1, 2, . . . , n

∑s
r=1 Uryrj∑D
d=1 Wpzpj

≤ 1, j = 1, 2, . . . , n

Wd ≥ 0, d = 1, 2, . . . , D; Vi ≥ 0,

i = 1, 2, . . . , m; Ur ≥ 0, r = 1, 2, . . . , s (12)

which is equivalent to

Max
D∑

d=1

wdzdo

s.t.
s∑

r=1

uryro = eCentralized
o

[
λ∗e2−

o + (1 − λ∗)e2+
o

] D∑
d=1

wdzdo − eCentralized
o ≤ 0

D∑
d=1

wdzdj −
m∑

i=1

vixij ≤ 0 j = 1, 2, . . . ., n

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0 j = 1, 2, . . . ., n

m∑
i=1

vixio = 1

wd ≥ 0, d = 1, 2, . . . , D; vi ≥ 0,

i = 1, 2, . . . , m; ur ≥ 0, r = 1, 2, . . . , s (13)

Let the optimal solution be w′
do, v′

io, u′
ro. Then e1

o = ∑D
d=1 w′

dozdo, and

e2
o = E∗

o /
∑D

d=1 w′
dozdo. Now, consider

Max

∑s
r=1 Uryro∑D
d=1 Wdzdo

s.t.

∑s
r=1 Uryro∑m
i=1 Vixio

= eCentralized
o∑D

d=1 Wdzdo∑m
i=1 Vixio

≥ [
λ∗e1−∗

o + (1 − λ∗)e1+∗
o

]
∑D

d=1 Wdzdj∑m
i=1 Vixij

≤ 1, j = 1, 2, . . . , n
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∑s
r=1 Uryrj∑D
d=1 Wdzdj

≤ 1, j = 1, 2, . . . , n

Wd ≥ 0, d = 1, 2, . . . , D; Vi ≥ 0,

i = 1, 2, . . . , m; Ur ≥ 0, r = 1, 2, . . . , s, (14)

which is equivalent to

Max
s∑

r=1

uryro

s.t.
s∑

r=1

uryro − eCentralized
o ×

m∑
i=1

vixio = 0

[
λ∗e1−

o + (1 − λ∗)e1+
o

] m∑
i=1

vixio − 1 ≤ 0

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0 j = 1, 2, . . . ., n

D∑
d=1

wdzdj −
m∑

i=1

vixij ≤ 0 j = 1, 2, . . . ., n

D∑
d=1

wdzdo = 1

wd ≥ 0, d = 1, 2, . . . , D; vi ≥ 0, i = 1, 2, . . . , m;

ur ≥ 0, r = 1, 2, . . . , s (15)

Let the optimal solution be w′′
do, v′′

io, u′′
ro, then e1

o = eCentralized
o /∑s

r=1 u′′
royro and e2

o = ∑s
r=1 u′′

royro.
Let

d ′ =
(

D∑
d=1

w′
dozdo − [

λ∗e1−
o + (1 − λ∗)e1+

o

])2

+
(

eCentralized
o /

D∑
d=1

w′
dozdo − [

λ∗e2−
o + (1 − λ∗)e2+

o

])2

d ′′ =
(

eCentralized
o /

s∑
r=1

u′′
royro − [

λ∗e1−
o + (1 − λ∗)e1+

o

])2

+
(

s∑
r=1

u′′
royro − [

λ∗e2−
o + (1 − λ∗)e2+

o

])2

If d ′ > d ′′, then e1
o = eCentralized

o /

s∑
r=1

u′′
royro and

e2
o =

s∑
r=1

u′′
royro;

If d ′′ > d ′, the e1
o =

D∑
d=1

w′
dozdo and

e2
o = eCentralized

o /

D∑
d=1

w′
dozdo;

If d ′′ = d ′, then e1
o =

D∑
d=1

w′
dozdo and

e2
o = eCentralized

o /

D∑
d=1

w′
dozdo, or

e1
o = eCentralized

o /

s∑
r=1

u′′
royro and e2

o =
s∑

r=1

u′′
royro.
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