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Abstract

Data envelopment analysis (DEA) is a methodology for identifying the e3cient frontier of decision making units (DMUs).
Context-dependent DEA refers to a DEA approach where a set of DMUs are evaluated against a particular evaluation
context. Each evaluation context represents an e3cient frontier composed by DMUs in a speci6c performance level. The
context-dependent DEA measures (i) the attractiveness when DMUs exhibiting poorer performance are chosen as the evaluation
context, and (ii) the progress when DMUs exhibiting better performance are chosen as the evaluation context. The current
paper extends the context-dependent DEA by incorporating value judgment into the attractiveness and progress measures. The
method is applied to measuring the attractiveness of 32 computer printers. It is shown that the attractive measure helps
(i) customers to select the best option, and (ii) printer manufacturers to identify the potential competitors.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Data envelopment analysis (DEA), introduced by
Charnes, Cooper and Rhodes (CCR) [1], is a mathematical
programming method for measuring the relative e3ciency
of decision making units (DMUs) with multiple outputs
and multiple inputs. DEA identi6es e3cient DMUs from
a given set of DMUs. It is well known that adding or
deleting an ine3cient DMU or a set of ine3cient DMUs
does not alter the e3ciencies of the existing DMUs and the
e3cient frontier. The ine3ciency scores change only if the
e3cient frontier is altered. i.e., the performance of DMUs
depends only on the identi6ed e3cient frontier. In contrast,
researchers of the consumer choice theory point out that
consumer choice is often in>uenced by the context, e.g., a
circle appears large when surrounded by small circles and
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small when surrounded by larger ones. Similarly, a product
may appear attractive against a background of less attrac-
tive alternatives and unattractive when compared to more
attractive alternatives [2].

Considering this in>uence within the framework of DEA,
one could ask “what is the relative attractiveness of a partic-
ular DMU when compared to others?” As in [3], one agrees
that the relative attractiveness of DMUx compared to DMUy

depends on the presence or absence of a third option, say
DMUz (or a group of DMUs). Relative attractiveness de-
pends on the evaluation context constructed from alternative
options (or DMUs).

In fact, a set of DMUs can be divided into diDerent levels
of e3cient frontiers. If we remove the (original) e3cient
frontier, then the remaining (ine3cient) DMUs will form a
new second-level e3cient frontier. If we remove this new
second-level e3cient frontier, a third-level e3cient frontier
is formed, and so on, until no DMU is left. Each such ef-
6cient frontier provides an evaluation context for measur-
ing the relative attractiveness, e.g., the second-level e3cient
frontier serves as the evaluation context for measuring the
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relative attractiveness of the DMUs located on the 6rst-level
(original) e3cient frontier. On the other hand, we can mea-
sure the performance of DMUs on the third-level e3cient
frontier with respect to the 6rst- or second-level e3cient
frontier.

In this way, we obtain a context-dependent DEA where
the relative attractiveness is obtained when DMUs having
worse performance are chosen as the evaluation context,
and the relative progress is obtained when DMUs having
better performance are chosen as the evaluation context.
The presence or absence (or the shape) of the evaluation
context (e3cient frontier) aDects the relative attractiveness
or progress of DMUs on a diDerent level of e3cient frontier.
When DMUs in a speci6c level are viewed as having equal
performance, the attractiveness measure or the progress
measure allows us to diDerentiate the “equal performance”
based upon the same speci6c evaluation context (or third
option).

Note that diDerent input/output measures play diDerent
roles in the evaluation of a DMU’s performance. Customers
may make trade-oDs among diDerent measures of a prod-
uct. For example, suppose we want to buy a dot-matrix
printer and we may, given the price, make trade-oDs amongst
the speed, print quality, and input buDer (memory) which
are some of the most important features that distinguish
24-pin dot-matrix printers. We may not consider the printer
memory feature to be very vital, because dot-matrix print-
ers only use memory as a buDer space to download fonts.
Thus, we give more consideration to speed and print qual-
ity. Perhaps, the printer is simply used to print long program
codes or data-base listings, so that speed outweighs print
quality.

Therefore, in measuring the relative attractiveness and
progress, incorporation of value judgment is also very im-
portant. The current paper uses the result of Zhu [4] to de-
velop a context-dependent DEA with value judgment. The
method is applied to measure the relative attractiveness of
a set of printers that is studied by Doyle and Green [5]. The
application demonstrates that the context-dependent DEA
helps practitioners to produce 6ner evaluation of e3ciency
in practical problems.

The rest of the paper is organized as follows. The next
section presents the context-dependent DEA. We then incor-
porate the value judgment into the context-dependent DEA.
The method is applied to a set of 32 printers. Conclusions
are provided in the last section.

2. Context-dependent DEA

Our model formulation below uses a vector notion for
inputs and outputs where DMUj (j = 1; 2; : : : ; n) produces
a vector of outputs yj = (yIj ; : : : ; ysj) by using a vector of
inputs xj = (xIj ; : : : ; xmj).

Let J1 = {DMUj ; j = 1; : : : ; n} be the set of all n
DMUs. We interactively de6ne Jl+1 = Jl − El where

El={DMUk ∈ Jl |�∗(l; k)=1}, and �∗(l; k) is the optimal
value to the following linear programming problem:

�∗(l; k) = max
j ;�(l; k)

�(l; k)

s:t:
∑

j∈F(Jl)

jyj¿�(l; k)yk ;

∑
j∈F(Jl)

jxj6 xk ;

j¿ 0; j∈F(Jl): (1)

where (xk ; yk) represents the input and output vector of
DMUk , and j∈F(Jl) means DMUj ∈ Jl, i.e., F(·) repre-
sents the correspondence from a DMU set to the correspond-
ing subscript index set.

When l = 1, model (1) becomes the original output-
oriented CCR model and DMUs in set E1 de6ne the
6rst-level e3cient frontier. When l = 2, model (1) gives
the second-level e3cient frontier after the exclusion of
the 6rst-level e3cient DMUs. And so on. In this manner,
we identify several levels of e3cient frontiers. We call El

the lth-level e3cient frontier. The following algorithm ac-
complishes the identi6cation of these e3cient frontiers by
model (1). The e3cient frontiers can be easily obtained by
using the DEA Excel Solver provided in [6].

• Step 1: Set l = 1. Evaluate the entire set of DMUs, J1,
by model (1) to obtain the 6rst-level e3cient DMUs, set
E1 (the 6rst-level e3cient frontier).

• Step 2: Exclude the e3cient DMUs from future DEA
runs. Jl+1 = Jl − El. (If Jl+1 = ∅ then stop.)

• Step 3: Evaluate the new subset of “ine3cient” DMUs,
Jl+1, by model (1) to obtain a new set of e3cient DMUs
El+1 (the new e3cient frontier).

• Step 4: Let l= l+ 1. Go to step 2.
• Stopping rule: Jl+1 = ∅, the algorithm stops.

There exists an input-oriented version of model (1). How-
ever, the input-oriented version of model (1) yields the same
strati6cation of the whole set of DMUs. Fig. 1 plots the three
levels of e3cient frontiers of 10 DMUs with two outputs
and one single input of one (see Table 1).

Now, based upon these evaluation contexts El (l =
1; : : : ; L), we can obtain the relative attractiveness measure
by the following context-dependent DEA:

�∗
q (d) = max

j ;�q(d)
�q(d); d= 1; : : : ; L− l0

s:t:
∑

j∈F(El0+d)

jyj¿�q(d)yq;

∑
j∈F(El0+d)

jxj6 xq;

j¿ 0 j∈F(El0+d): (2)
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Fig. 1. E3cient frontiers in diDerent levels.

Table 1
Sample DMUs

DMU 1 2 3 4 5 6 7 8 9 10

Output 1 6 5 2 5.5 4.75 3 1 4 3 1
Output 2 2 3.5 5 1.5 2.5 3.5 4 1 3 3.5

where DMUq = (xq; yq) is from a speci6c level El0 ; l0 ∈
{1; : : : ; L−1}. We have (i)�∗

q (d)¡ 1 for each d=1; : : : ; L−
l0, and (ii) �∗

q (d+ 1)¡�∗
q (d).

De�nition 1. A∗
q (d) ≡ 1=�∗

q (d) is called the (output-
oriented) d-degree attractiveness of DMUq from a speci6c
level El0 .

Suppose, e.g., each DMU in the 6rst-level e3cient fron-
tier represents an option, or product. Customers usually com-
pare a speci6c DMU in El0 with other alternatives that are
currently in the same level as well as with relevant alterna-
tives that serve as evaluation contexts. The relevant alter-
natives are those DMUs, say, in the second- or third-level
e3cient frontier, etc. Given the alternatives (evaluation con-
texts), model (2) enables us to select the best option—the
most attractive one.

In model (2), each e3cient frontier of El0+d represents an
evaluation context for measuring the relative attractiveness
of DMUs in El0 . Note that A∗

q (d) is the reciprocal of the
optimal value to (2), therefore A∗

q (d)¿ 1. The larger the
value of A∗

q (d), the more attractive the DMUq is, because
this DMUq makes itself more distinctive from the evalua-
tion context El0+d. We are able to rank the DMUs in El0

based upon their attractiveness scores and identify the best
one.

To obtain the progress measure for a speci6c DMUq ∈El0 ;
l0 ∈{2; : : : ; L}, we use the following context-dependent
DEA:

P∗
q (g) = max

j ;Pq(g)
Pq(g); g= 1; : : : ; l0 − 1

s:t:
∑

j∈F(El0−g)

jyj¿Pq(g)yq;

∑
j∈F(El0−g)

jxj6 xq;

j¿ 0 j∈F(El0−g): (3)

We have (i) P∗
q (g)¿ 1 for each g = 1; : : : ; l0 − 1, and

(ii) P∗
q (g+ 1)¿P∗

q (g).

De�nition 2. The optimal value to (7), i.e., P∗
q (g), is called

the (output-oriented) g-degree progress of DMUq from a
speci6c level El0 .

Each e3cient frontier, El0−g, contains a possible target
for a speci6c DMU in El0 to improve its performance. The
progress here is a level-by-level improvement. For a larger
P∗
q (g), more progress is expected for DMUq. Thus, a smaller

value of P∗
q (g) is preferred.

3. Context-dependent DEA with value judgment

In the previous section, both attractiveness and progress
are measured radially with respect to diDerent levels of e3-
cient frontiers. The measurement does not require a priori in-
formation on the importance of the attributes (input/output)
that feature the performance of DMUs. However, diDerent
attributes play diDerent roles in the evaluation of a DMU’s
overall performance. Therefore, we introduce value judg-
ment into the context-dependent DEA.

3.1. Incorporating value judgment into attractiveness
measure

In order to incorporate such a priori information into our
measures of attractiveness and progress, we 6rst specify a
set of weights related to the s outputs, ur (r= 1; : : : ; s) such
that

∑s
r=1 ur + 1. Based upon [4], we develop the follow-

ing linear programming problem for DMUq = (xq; yq) =
(x1q; : : : ; xmq; y1q; : : : ; ysq) in El0 ; l0 ∈{1; : : : ; L− 1}:

�∗
q (d) = max

j ;�rq(d)

s∑
r=1

ur�
r
q(d); d= 1; : : : ; L− l0

s:t:
∑

j∈F(El0+d)

jyrj¿�r
q(d)yrq; r = 1; : : : ; s;

∑
j∈F(El0+d)

jxij6 xiq; i = 1; : : : ; m;
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�r
q(d)6 1; r = 1; : : : ; s;

j¿ 0; j∈F(El0−d): (4)

De�nition 4. TTA∗
q (d) ≡ 1=�∗

q (d) is called the (output-
oriented) value judgment (VJ) d-degree attractiveness of
DMUq from a speci6c level El0 .

Obviously, TTA∗
q (d)¿ 1. The larger the TTA∗

q (d) is, the more
attractive the DMUq appears under the weights ur (r =
1; : : : ; s). We now can rank DMUs in the same level by their
VJ attractiveness scores incorporated with the preferences
over outputs.

If one wishes to prioritize the options (DMUs) with higher
values of the r0th output, then one can increase the value of
the corresponding weight ur0 . These user-speci6ed weights
re>ect the relative degree of desirability of the corresponding
outputs. For example, if one prefers a printer with faster
printing speed to one with higher print quality, then one
may specify a larger weight for the speed (output). The
constraints of �r

q(d)6 1 (r = 1; : : : ; s) ensure that in an
attempt to make itself as distinctive as possible, DMUq is
not allowed to decrease some of its outputs to achieve higher
levels of other preferred outputs.

Consider DMUs, 1, 2 and 3 in Table 1 and select the
second-level e3cient frontier as the evaluation background,
i.e., we consider the VJ 6rst-degree attractiveness.

Case I: If let u1 = u2 = 0:5, i.e., the preference over
the two outputs is equal, then we have TTA∗

1 (1) = 1:0787,
TTA∗
2 (1)=1:2019 and TTA∗

3 (1)=1:1429. Thus, DMU2 is the most
attractive one;

Case II: If let u1 = 0:98 and u2 = 0:02, i.e., we prefer the
6rst output, then we have TTA∗

1 (1) = 1:0949, TTA∗
2 (1) = 1:0077

and TTA∗
3 (1)=1:0050. Thus, DMU1 is the most attractive one;

Case III: If u1 = 0:02 and u2 = 0:98, i.e., we prefer the
second output, then we have TTA∗

1 (1)=1:0030, TTA∗
2 (1)=1:0081

and TTA∗
3 (1) = 1:2595. Thus, DMU3 is the most attractive

one.
It can be seen that diDerent weight combinations lead to

diDerent attractiveness scores.
Note that TTA∗

q (d) (or �∗
q (d)) is an overall attractiveness

of DMUq in terms of outputs while keeping the inputs at
their current levels. On the other hand, each individual op-
timal value of 1=�r∗

q (d); (r = 1; : : : ; s) measures the attrac-
tiveness of DMUq in terms of each output dimension. Note
that TTA∗

q (d) is not equal to
∑s

r=1 urA
r
q(d), where Ar

q(d) =
1=�r∗

q (d).

De�nition 5. For DMUq ∈El0 ; l0 ∈{2; : : : ; L}, the optimal
value TTAr∗q (d) ≡ 1=�r∗

q (d) is called the (output-oriented) VJ
d-degree output-speci6c attractiveness measure.

Consider case I of VJ 6rst-degree attractiveness. When
u1 = u2 = 0:5, we have (i) A1

1(1) = 1:1710, A2
1(1) = 1 for

DMU1; (ii) A1
2(1)=1:0526, A2

2(1)=1:4006 for DMU2; and
(iii) A1

3(1) = 1, A2
3(1) = 1:3333 for DMU3. Thus, DMU1 is

the most attractive one in terms of the 6rst output, whereas
DMU2 is the most attractive one in terms of the second
output.

Let �r
q(d)yrq = yrq − srq(d) (r = 1; : : : ; s) in (4). Since

�r
q(d)6 1; srq(d)¿ 0, model (4) is equivalent to the fol-

lowing linear programming problem:

min
j ; srq(d)

s∑
r=1

Drs
r
q(d); d= 1; : : : ; L− l0

s:t: yrq −
∑

j∈F(El0+d)

jyrj = srq(d); r = 1; : : : ; s;

∑
j∈F(El0+d)

jxij6 xiq; i = 1; : : : ; m;

srq(d)¿ 0; r = 1; : : : ; s;

j¿ 0; j∈F(El0+d): (5)

whereDr=ur=yrq, i.e., ur is normalized by the corresponding
output quantity. srq(d) in (5) can be regarded as the maxi-
mum possible output reduction to a speci6c e3cient frontier
El0+d. Therefore, the output-speci6c attractiveness measure
characterizes the diDerence between DMUq ∈El0 and El0+d

in terms of a speci6c output.
With the output-speci6c (or input-speci6c) attractive-

ness measures, one can further identify which outputs
(inputs) play important roles in distinguishing a DMU’s
performance. On the other hand, if �r∗0

q (d) = 1, then other
DMUs in El0+d or their combinations can also produce
the amount of the r0th output of DMUq, i.e., DMUq does
not exhibit better performance with respect to this speci6c
output dimension. Therefore, DMUq should improve its
performance on the r0th output to distinguish itself in the
future.

3.2. Incorporating value judgment into progress measure

Similar to the development in the previous section, we
can de6ne the output-oriented VJ progress measure:

TTP∗
q (g) = max

j ;Prq(g)

s∑
r=1

urP
r
q(g); g= 1; : : : ; l0 − 1

s:t:
∑

j∈F(El0−g)

jyrj¿Prq(g)yrq; r = 1; : : : ; s;

∑
j∈F(El0−g)

jxij6 xiq; i = 1; : : : ; m;

Prq(g)¿ 1; r = 1; : : : ; s;

j¿ 0; j∈F(El0−g): (6)
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De�nition 6. The optimal value TTP∗
q (g) is called the

(output-oriented) VJ g-degree progress of DMUq in a
speci6c level El0 .

The larger the TTP∗
q (g) is, the greater the amount of progress

is expected for DMUq. Here the user-speci6ed weights re-
>ect the relative degree of desirability of improvement on
the individual output levels.

Let Pr∗q (g) represent the optimal value of (6) for a
speci6c g∈{1; : : : ; l0 − 1}. By Zhu [4], we know that∑

j∈F(El0−g) 
∗
j yrj = Pr∗q (g)yrq holds at optimality for each

r = 1; : : : ; s. Consider the following linear programming
problem:

max
m∑
i=1

s−i (g); g= 1; : : : ; l0 − 1

s:t:
∑

j∈F(El0−g)

jyrj = Pr∗q (g)yrq; r = 1; : : : ; s;

∑
j∈F(El0−g)

jxij + s−i (g) = xiq; i = 1; : : : ; m;

s−i (g)¿ 0; r = 1; : : : ; s;

j¿ 0; j∈F(El0−g): (7)

De�nition 7. (Preferred global e7cient target and pre-
ferred local e7cient target) The following point:{
ŷ rq = Pr∗q (g)yrq; r = 1; : : : ; s;

x̂iq = xiq − s−∗
i (g); i = 1; : : : ; m

is a preferred global e7cient target for DMUq ∈El0 ; l0 ∈
{2; : : : ; L} if g=l0−1; otherwise, if g¡ l0−1, it represents a
preferred local e7cient target, where Pr∗q (g) is the optimal
value in (6), and s−∗

i (g) represent the optimal values in (7).

3.3. More discussion

In order to further investigate the property of models (4)
and (6), we consider the dual program to (4):

min
m∑
i=1

wixiq +
s∑
r=1

er

s:t:
s∑
r=1

"ryrj −
m∑
i=1

wixij6 0; j∈F(El0+d);

"ryrq + er¿ ur; r = 1; : : : ; s;

wi; er ; "r¿ 0 (8)

in which wi and "r are the input and the output multipliers,
respectively, and er are the dual variables associated with
�r
q(d)6 1.

We rewrite the constraint of "ryrq + er¿ ur in (8) as
"r¿ ur − er=yrq¿ ur=yrq. It can be seen that the weights
in (4) are the lower multiplier bounds in (8). Therefore, the
value judgment here can be expressed by the assurance re-
gion concept [7]. The weights in (4) can be obtained by
multiplying each lower output multiplier bound by its cor-
responding output quantity. In fact, the lower output multi-
plier bounds can be used as Dr in (5).

Moreover, substituting "r = ur=yrq into (8) yields∑m
i=1 wixij¿Rj; j∈F(El0+d), where Rj =

∑s
r=1 uryrj=yrq.

Thus, Rj can be interpreted as the available resource level
for each DMUj ; j∈F(El0+d). The range of Rj can be ob-
tained through additional information, such as, price/cost
data on inputs. If the number of DMUs in El0+d is greater
than the number of outputs, then we may use

∑s
r=1 Yjur=Rj

to determine ur , where Yj = yrj=yrq; j∈F(El0+d).
Finally, the current discussion is based upon the

output-oriented DEA models. Similar context-dependent
DEA models can be obtained if we use input-oriented DEA
models. See Appendix for the models.

4. An application

Doyle and Green [5] benchmarked 37 computer printers
using DEA. We revisit their data set by using the newly
developed context-dependent DEA. In order to keep the re-
sults consistent and comparable with Doyle and Green [5],
we choose price (in US dollars) as the single input. The
following features/measures are chosen as outputs: (1) in-
put buDer; (2) mean time between failure (MTBF); (3)
80-column throughput; (4) graphics throughput; (5) sound
level and (6) print quality (see Table 2).

There are two kinds of input buDers: standard and op-
tional. Because some printers have zero values for either
the standard or optional input buDer, we combine the two
scores to give a composite input buDer score so that all
scores are positive. The larger the buDer, the more output
a computer can transmit to the printer and the sooner the
computer is freed for other uses. As stated in Stewart [8],
MTBF (in hours) is a signi6cant speci6cation of a manu-
facturer’s rating of the durability of a printer. The current
study does not have access to the MTBF of the follow-
ing 6ve printers: Star Micronics NB24-15, Toshiba P341SL,
IBM Proprinter XL24, Star Micronics NB-15 and Toshiba
P351SX.

The third and fourth outputs are measures of printing
speed in characters per second (cps) which is the document
length in bytes divided by the number of seconds to print
it. (Higher numbers signify faster performance.) The 6fth
output is a measure of the noise level (in dBA) where lower
numbers are preferable. Based upon [9], because it is an
output measure, we subtract each number from 100 to ob-
tain an adjusted score for the DEA analysis. The last output
is a combined quality score for text and graphics quality
scores where larger numbers indicate a higher quality. Note
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Table 2
Data for the 32 printers

Printer DMU Price Input MTBF 80-column Graphics Sound Print
name no. buDer throughput throughput level quality

Epson LQ-500 1 499 8 4000 101 850 72 5
NEC P2200 2 499 8 4000 85 830 72 5
Seikosha SL-80AI 3 549 16 3200 56 451 68 4
Copal WH 6700 4 795 50 4000 102 450 69 3
Epson LQ-850 5 799 38 4000 148 1350 71 7
Printronix P1013 6 895 2 4000 107 683 78 6
Panasonic KX-P1524 7 899 45 4000 107 850 75 7
Brother M-1724L 8 949 32 4000 107 931 72 5
Citizen Tribute 224 9 949 24 5000 122 917 73 6
ALPS ALQ324 10 995 71 5000 105 562 69 6
Fujitsu DL3400 11 995 24 8000 146 1440 63 7
NEC P7 12 995 50 5000 111 1255 65 6
Sanyo PR-241 13 999 10 8000 90 955 68 6
Dataproducts 9044 14 1099 32 5000 121 687 72 5
Epson LQ-1050 15 1099 48 6000 147 1367 71 7
Facit B3450 16 1245 16 4000 134 1090 72 5
C. Itoh C-715A 17 1295 32 7200 131 1186 74 7
Nissho NP-2405 18 1295 36 6000 139 650 72 7
ALPS P2400C 19 1395 256 6000 146 1000 70 7
Okidata Microline 393 20 1399 30 4000 184 2400 67 9
Epson LQ-2500 21 1449 40 6000 128 1459 70 6
Fujitsu DL2600 22 1495 80 6000 146 1588 69 8
NEC P5XL 23 1495 40 7000 132 1421 68 7
Radio Shack DMP-2120 24 1599 64 3000 150 465 68 7
AT&T 477 25 1695 80 6000 146 1301 69 7
Hewlett-Packard RW480 26 1695 36 20000 191 542 69 15
Nissho NP-2410 27 1745 54 6000 169 683 71 12
NEC P9XL 28 1795 48 7000 170 1928 68 8
Mannesmann Tally MT330 29 1799 32 4800 205 1069 63 7
C. Itoh C-815 30 1995 42 7200 182 2823 72 10
Fujitsu DL5600 31 2195 24 8000 236 3176 68 12
Japan Dgtl. Labs JDL-850 32 2495 128 4000 169 497 63 9

that the last four outputs are among the test criteria used
by Stewart [8]. Also, based upon Stewart [8], printers
1–13 are in the low-price category ($499–$999), printers 14
–23 are in the middle-price category ($1000–$1499), print-
ers 24–30 are in the high-price category ($1500–$1999)
and printers 31 and 32 are in the deluxe price category
($2000–$2499).

By using the DEA model (1), we obtain four levels of
e3cient frontiers. They are

E1 = {DMUj | j = 1; 2; 3; 5; 19; 20; 26};

E2 = {DMUj | j = 4; 7; 10; 11; 12; 15; 31};

E3 = {DMUj | j = 6; 8; 9; 13; 22; 27; 30};

E4 = {DMUj | j = 14; 16; 17; 18; 21; 23; 24; 25; 28; 29; 32}:
It can be seen from the original DEA (CCR) model, seven

printers in E1 are e3cient. This result is slightly diDerent

from that of Doyle and Green [5], partly because we treat
one of the outputs, sound level, in a diDerent way. Note that
three of the six “outstanding buys” selected by Stewart [8],
namely, DMU1 (Epson LQ-500), DMU20 (Okidata Micro-
line 393) and DMU26 (Hewlett-Packard RW480) are in the
6rst-level e3cient frontier and the remaining three, namely,
DMU4 (Copal WH6700), DMU11 (Fujitsu DL3400) and
DMU31 (Fujitsu DL5600) are in the second-level e3cient
frontier. We next discuss the 14 printers in E1 and E2 in
detail.

First, by using (2) we consider the attractiveness and
progress of the 14 printers when diDerent e3cient fron-
tiers are chosen as evaluation contexts. Table 3 gives the
results.

The number to the right of each score indicates the ranking
position by the attractiveness measure. ( represents the
top-rank position) Note that DMU19 (ALPS P2400C) and
DMU4 (Copal WH 6700) are the most attractive printers
in the 6rst and second levels, respectively, no matter which
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Table 3
Attractive and progress scores for the 14 printers in E1 and E2

Printer name DMU no. Background (e3cient frontier)

Second-level Third-level Fourth-level
First-degreea Second-degree Third-degree

Epson LQ-500 1 1.50092 1.85446 2.32072
NEC P2200 2 1.50092 1.78060 2.30622
Seikosha SL-80AI 3 1.51699 1.85487 2.28781
Epson LQ-850 5 1.33046 1.59208 1.83955
ALPS P2400C 19 2.57175 3.42936 3.57769
Okidata Microline 393 20 1.18545 1.31406 1.59716
Hewlett-Packard RW480 26 1.46755 1.54022 2.12224

First-degreeb First-degree Second-degree
Copal WH 6700 4 1.16312 1.50432 1.72718
Panasonic KX-P1524 7 1.13117 1.28282 1.53605
ALPS ALQ324 10 1.27868 1.41235 1.60648
Fujitsu DL3400 11 1.03020 1.37561 1.67563
NEC P7 12 1.19557 1.29241 1.57736
Epson LQ-1050 15 1.22295 1.18991 1.38623
Fujitsu DL5600 31 1.18327 1.09066 1.34711

aThe number to the right of each score indicates the ranking position.
bThis represents progress.

Fig. 2. Ranking of the ine3cient printers by the original DEA.

evaluation context is chosen. Also, DMU1 (Epson LQ-500)
and DMU11 (Fujitsu DL3400) have the second and third
ranking positions, respectively.

Fig. 2 gives the ranking of the 25 ine3cient DMUs in sets
E2, E3 and E4 by the original output-oriented CCR model.

The ranking scores are reciprocal of the output-oriented CCR
e3ciency scores which are equal to one if DMUs are in E1,
and otherwise are greater than one if DMUs are in set E2

or E3 or E4. Table 3 also reports the progress scores for the
printers in E2. The scores are actually the output-oriented
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Fig. 3. Attractiveness—progress.

CCR scores. It can be seen that DMU10 is the worst printer
in E2. However, it has a better performance in terms of
the attractiveness score. DMU10 is ranked as second and
third by the 6rst-degree and the second-degree attractiveness
scores, respectively.

In fact, for DMUs that are not located on the 6rst or last
level of e3cient frontier, we can characterize their perfor-
mance by their attractiveness and progress as shown in Fig. 3
where the solid circle represents the DMU being evaluated.
The most desirable category is the low progress − high at-
tractiveness (LH) and the least desirable category is the high
progress − low attractiveness (HL). A high progress indi-
cates that the DMU needs to improve its outputs substan-
tially, and a high attractiveness indicates that the DMU does
not have any close competitors. For example, for the printers
in E2, we may categorize (i) Copal WH 6700 (DMU4) and
Fujitsu DL3400 (DMU11) as LH, (ii) Panasonic KX-P1524
(DMU7) as LL, (iii) ALPS ALQ324 (DMU10) as HH, and
(iv) NEC P7 (DMU12), Epson LQ-1050 (DMU15), and
Fujitsu DL5600 (DMU31) as HL.

Next, we consider DMU19 (ALPS P2400C). Note that
this printer has the largest input buDer, 256 k (the average
value of the others is 40 k). Thus, the massive input buDer is
likely to lead to the large attractiveness score for that printer,
and consequently, the attractiveness measure for DMU19
may be biased. Therefore, we need to de6ne some weights,

Table 4
VJ attractiveness scores for the seven printers in E1 when E2 is chosen as the evaluation contexta

Printer name DMU no. No weight Weight-1 Weight-3

Epson LQ-500 1 1.50092 1.42580 1.39677
NEC P2200 2 1.50092 1.33025 1.27733
Seikosha SL-80AI 3 1.51699 1.00125 1.25382
Epson LQ-850 5 1.33046 1.31890 1.25382
ALPS P2400C 19 2.57175 1.00255 1.00319
Okidata Microline 393 20 1.18545 1.09626 1.00133
Hewlett-Packard RW480 26 1.46755 1.04331 1.06608

aThe number to the right of each score indicates the ranking position.

ur(r = 1; : : : ; 6) to construct the output-oriented VJ attrac-
tiveness score by using model (4).

Stewart [8] writes:

Among low-price units, the Epson LQ-500 ($499),
the Copal Write Hand 6700 ($795), and the Fujitsu
DL3400 ($995) each oDer bargain hunters good com-
binations of speed and quality.

Thus, if we prefer speed and quality, we specify the fol-
lowing weights where more weight is put on 80-column
throughout, graphics throughout and print quality which
characterize speed and quality.

Weight-1 : u1 = 0:004; u2 = 0:003; u3 = 0:33;

u4 = 0:33; u5 = 0:003; u6 = 0:33;

Tables 4 and 5 report the VJ (6rst-degree) attractiveness
scores for the printers in E1 and E2, respectively.

It can be seen that DMU1 (Epson LQ-500) and DMU11
(Fujitsu DL3400) are the top-ranked printers in E1 and E2,
respectively. Note that DMU11 (Fujitsu DL3400) is the
top-ranked unit among the ine3cient DMUs by the CCR
model (see Fig. 2). This observation strengthens the con-
clusion that these two printers are the best ones.

However, DMU4 (Copal WH6700) which is ranked
highly by the CCR model does not have a large attractive-
ness score. When calculating the VJ attractiveness score
for DMU4, model (4) identi6es DMU8 and DMU9 as the
referent DMUs. (The associated optimal lambda values are
0.013 and 0.824, respectively.) Thus, the unattractiveness
of DMU4 is due to the presence of DMU8 and DMU9. Note
that DMU4, DMU8 and DMU9 are all in the low-price
category. Hence, DMU8 (Brother M-1724L) and DMU9
(Citizen Tribute 224) could be the potential competitors for
DMU4 (Copal WH6700).

It can also be seen that DMU26 (Hewlett-Packard
RW480) has a small attractiveness score of 1.04331 al-
though it achieves a top rating in terms of text and graphics
quality. Note that our VJ attractiveness measure is based on
the situation where inputs are 6xed at current levels. Model
(4) identi6es DMU7 (Panasonic KX-P1524) as the referent
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Table 5
VJ attractiveness scores for the seven printers in E2 when E3 is chosen as the evaluation contexta

Printer name DMU no. No weight Weight-1 Weight-2

Copal WH 6700 4 1.50432 1.00320 1.00431
Panasonic KX-P1524 7 1.28282 1.06673 1.14002
ALPS ALQ324 10 1.41235 1.00205 1.00347
Fujitsu DL3400 11 1.37561 1.14645 1.03367
NEC P7 12 1.29241 1.04595 1.00436
Epson LQ-1050 15 1.18991 1.09975 1.00398
Fujitsu DL5600 31 1.09066 1.05477 1.00079

aThe number to the right of each score indicates the ranking position.

Fig. 4. (a) First-degree attractiveness under Weight-1; (b) attractiveness for second-level printers under Weight-2; and (c) attractiveness for
6rst-level printers under Weight-3.

printer. If we examine the original data for the two printers

Printer DMU Price Input MTBF 80-column Graphics Sound Print
name no. buDer throughput throughput level quality

Panasonic KX-P1524 7 899 45 4000 107 850 75 7
Hewlett-Packard RW480 26 1695 36 20000 191 542 69 15
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we observe that the price of DMU26 almost doubles that of
DMU7. Note that DMU7 is in the low-price category and
DMU26 is in the high-price category. However, DMU26
does not have a higher value of graphics throughput, and
consequently, the presence of DMU7 makes DMU26 less
attractive. DMU7 may be a better alternative for DMU26
if one’s budget is restricted. In other words, in terms of
the price and the printers in E2, DMU26 (Hewlett-Packard
RW480) is not attractive among the seven printers in E1.
This result is consistent with the statement in Stewart
[8, p. 124],: “If you are willing to pay the price, you can def-
initely 6nd speed and quality in one unit (Hewlett-Packard
RW480)”. Finally, note that DMU19 dropped to the sixth
position in terms of attractiveness ranking.

If quality alone is the consideration, then we choose the
following weights:

Weight-2 : ur = 0:005(r = 1; : : : ; 5) and u6 = 0:975:

From the last column of Table 5, we see that the most at-
tractive printer is DMU7 (Panasonic KX-P1524), followed
by the DMU11 (Fujitsu DL3400) which were suggested by
Stewart [8] for quality consideration.

If we prefer 80-column throughout and quality, we specify
the following weights:

Weight-3 : u1 = 0:005; u2 = 0:005; u3 = 0:49;

u4 = 0:005; u5 = 0:005; u6 = 0:49:

In this case, DMU20 (Okidata Microline 393) is the most
unattractive printer among the seven printers in E1 (see last
column in Table 4). Stewart [8] stated “The Okidata Micro-
line 393 ($1399) looks more like a high-price unit in terms
of 80-column throughout and quality”. In fact, DMUs 11, 15
and 31 are in the reference set under model (4), i.e., these
three DMUs serve as the evaluation context when measuring
the VJ attractiveness of DMU20. From the optimal lambda
values, we see that DMU11 plays a substantial role with
∗11 =0:790 compared to DMU15 (∗15 =0:121) and DMU31
(∗31 = 0:219). In terms of the price, DMU20 obviously
does not have the advantage in 80-column throughout and
quality.

DiDerent results are observed from Figs. 4a–c, when value
judgment is incorporated into the attractiveness measure. In
particular, since model (2) considers a radial reduction of
all outputs which is restricted by the lower output levels, it
cannot re>ect the attractiveness on each output dimension.
However, model (4) gives the maximum reduction on each
output level for a particular DMU under consideration. The
weights speci6ed in model (4) prescribe priority for each
reduction.

Finally, we illustrate how to identify which of the six
features (outputs) of each printer in E1 exhibits the leading
performance with respect to the printers in E2. That is, based
uponE2 and the 6rst-degree attractiveness, we determine, for
a printer in E2, (a) the “superior” features that other printers
may have di3culties to catch up, and (b) the “noninferior”

features for which other printers or their combinations also
achieve the same performance level. This analysis provides
the manufacturers with information on (i) which features of
a printer should be improved to gain a competitive edge, and
(ii) the referent printers in E2 may be viewed as potential
competitors.

Let us assume equal weights in model (4), i.e., ur =
1
6 ; r=1; : : : ; 6. Table 6 reports the six output-speci6c attrac-
tiveness measures along with the referent printers. It can be
seen that four printers in E2 appear in the reference set, of
which three are outstanding buys, and in particular, Fujitsu
DL3400 (DMU11) appears in every reference set. The two
outstanding buys in E2, namely Okidata Microline 393
(DMU20) and Hewlett-Packard RW480 (DMU26), which
are in the high/deluxe price category, do not exhibit good
performance in terms of output-speci6c attractiveness mea-
sures. For instance, DMU20, which is the winner (middle
price) in graphics tests [8], only has 1.36310 on its graph-
ics throughput, and 1.0 on all other features. DMU26
exhibits good performance only on MTBF and print qual-
ity. However, Epson LQ-850 (DMU5) and ALPS P2400C
(DMU19) exhibit a good performance based upon most of
the output-speci6c attractive measures. This indicates that
if no preference is given to speci6c output features, these
two printers may be a good choice in the presence of the
outstanding buy, DMU11 (Fujitsu DL3400).

Finally, if we remove DMU11 from E2, then the
output-speci6c attractiveness for DMU1 is improved for
each feature except for input buDer and graphics throughput
(1, 1.46827, 1.51322, 1.36945, 2.12646, 1.57312 versus 1,
1, 1.37941, 1.48675, 1.50896, 1.42428). The new referent
printer is DMU15. This indicates that removing an ine3-
cient DMU aDects the attractiveness of e3cient DMUs.

5. Conclusions

Context-dependent DEA is developed to measure the at-
tractiveness and progress of DMUs with respect to a given
evaluation context. DiDerent strata of e3cient frontiers
rather than the traditional 6rst-level e3cient frontier are
used as evaluation contexts. In the original DEA, adding
or deleting ine3cient DMUs does not alter the e3ciencies
of the existing DMUs and the e3cient frontier whereas
under the context-dependent DEA, such action changes the
performance of both e3cient and ine3cient DMUs. i.e.,
the context-dependent DEA performance depends on not
only the e3cient frontier, but also the ine3cient DMUs.
This change makes DEA more versatile and allows DEA to
locally and globally identify better options. Value judgment
is incorporated into the context-dependent DEA through
a speci6c set of weights re>ecting the preferences over
various output (or input) measures. In particular, the at-
tractiveness measure can be used to (i) identify DMUs
that have outstanding performance and (ii) diDerentiate the
performance of DEA e3cient DMUs.
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Table 6
Output-speci6c attractiveness scores for the printers in E1

Printer name DMU no. Input buDer MTBF 80-column throughput Graphics throughput Sound level Print quality

Epson LQ-500 1 1 1 1.37941 1.48675 1.50896 1.42428
Referent printer Fujitsu DL3400 (DMU11)

NEC P2200 2 1 1 1.16088 1.45176 1.50896 1.42428
Referent printer Fujitsu DL3400 (DMU11)

Seikosha SL-80AI 3 1 1 1 1 1.24542 1.36564
Referent printers Copal WH 6700 (DMU4) and Fujitsu DL3400 (DMU11)

Epson LQ-850 5 3.12997 1 2.02519 2.35939 1.56353 1.99627
Referent printer Fujitsu DL3400 (DMU11)

ALPS P2400C 19 21.26936 1.49549 1.99399 1.74911 1.61675 1.99399
Referent printer Fujitsu DL3400 (DMU11), Epson LQ-1050 (DMU15), and Fujitsu DL5600 (DMU31)

Okidata Microline 393 20 1 1 1 1.36310 1 1
Referent printers Fujitsu DL3400 (DMU11)

Hewlett-Packard RW480 26 1 1.46755 1 1 1 1.25790
Referent printer Fujitsu DL3400 (DMU11)

The application of comparing computer printers illus-
trates that in-depth information can be obtained by the
context-dependent DEA when compared to the results ob-
tained from the original DEA method. Context-dependent
DEA identi6es the most attractive printer among the out-
standing buys located at two diDerent levels of e3cient
frontiers. It also identi6es the most attractive printer in
terms of individual features, e.g., speed and quality. The
method uncovers better options and prescribes possible
improvement when a speci6c printer is rated as ine3cient
by the original DEA model. With a restricted budget, the
DEA-e3cient printers may not necessarily be the best
choice. In our application, we are able to identify bet-
ter alternatives. In addition, with a sensitivity analysis of
weights, one could determine allowable weight ranges to be
speci6ed by users or experts. However, this type of study
is beyond the scope of the current paper and is therefore
classi6ed as future research.
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Appendix A. Input-oriented context-dependent DEA

Here, we provide the input-oriented context-dependent
DEA.

Consider the following linear programming problem for
DMUq =(xq; yq) in a speci6c level El0 ; l0 ∈{1; : : : ; L− 1}:
H∗
q (d) = minHq(d); d= 1; : : : ; L− l0

s:t:
∑

j∈F(El0+d)

jxj6Hq(d)xq;

∑
j∈F(El0+d)

jyj¿ yq;

j¿ 0; j∈F(El0+d): (A.1)

Note that dividing each side of the constraint of (A.1) by
Hq(d) gives∑
j∈F(El0+d)

̃jxj6 xq;

∑
j∈F(El0+d)

̃jyj¿
1

Hq(d)
yq;

̃j =
j

Hq(d)
¿ 0; j∈F(El0+d):

Therefore, (A.1) is equivalent to (2), and we have (i)
H∗
q (d) = 1=�∗

q (d) for DMUq ∈El0 ; l0 ∈{1; : : : ; L − 1},
(ii) H∗

q (d)¿ 1 for each d = 1; : : : ; L − l0, and H∗
q (d +

1)¿H∗
q (d).

De�nition A.1. H∗
q (d) is called (input-oriented) d-degree

attractiveness of DMUq from a speci6c level El0 .
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The bigger the H∗
q (d) is, the more attractive the DMUq

is. Model (A.1) determines the relative attractiveness score
for DMUq when outputs are 6xed at their current levels. To
measure the progress of DMUq ∈El0 ; l0 ∈{2; : : : ; L}, we
develop

G∗
q (g) = minGq(g); g= 1; : : : ; l0 − 1

s:t:
∑

j∈F(Elo−g)

jxj6Gq(()xq;

∑
j∈F(Elo−g)

jyj¿ yq;

j¿ 0; j∈F(El0−s): (A.2)

We have (i) G∗
q (g) = 1=P∗

q (g) for DMUq ∈El0 ; l0 ∈
{2; : : : ; L}, (ii) G∗

q (g)¡ 1 for each g = 1; : : : ; l0 − 1, and
(iii) G∗

q (g+ 1)¡G∗
q (g).

De�nition A.2. M∗
q (g) ≡ 1=G∗

q (g) is called (input-oriented)
g-degree progress of DMUq from a speci6c level El0 .

Obviously, M∗
q (g)¿ 1. For a larger M∗

q (g), more
progress is expected. Next, we develop the following
linear programming problem for DMUq = (xq; yq) =
(xlq; : : : ; xmq; ylq; : : : ; ysq) in El0 ; l0 ∈{1; : : : ;L− 1}:
TTH∗
q (d) = min

m∑
i=1

wiH
i
q(d); d= 1; : : : ; L− l0

s:t:
∑

j∈F(El0+d)

jxij6Hi
q(d)xiq; i = 1; : : : ; m;

∑
j∈F(El0+d)

jyrj¿ yrq; r = 1; : : : ; s;

Hi
q(d)¿ 1; i = 1; : : : ; m;

j¿ 0; j∈F(El0+d);

where wi (i = 1; : : : ; m) such that
∑m

i=1 wi = 1 are
user-speci6ed weights re>ecting the preference over the
input improvements.

De�nition A.3. The optimal value TTH∗
q (d) is called

(input-oriented) VJ d-degree attractiveness of DMUq in a
speci6c level El0 .

To measure the (input-oriented) VJ progress, we have

TTG∗
q (g) = min

m∑
i=1

wiG
i
q(g); g= 1; : : : ; l0 − 1

s:t:
∑

j∈F(El0−g)

jxij6Gi
q(g)xiq; i = 1; : : : ; m;

∑
j∈F(El0−g)

jyrj¿ yrq; r = 1; : : : ; s;

Gi
q(g)6 1; i = 1; : : : ; m;

j¿ 0; j∈F(El0−g):

De�nition A.4. The optimal value TTM∗
q (g) ≡ 1= TTG∗

q (g)(*),
is the (input-oriented) VJ g-degree progress of DMUq from
a speci6c level El0 .
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