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Data envelopment analysis (DEA), as originally proposed, is a methodology for evaluating the relative efficiencies of a set
of homogeneous decision-making units (DMUs) in the sense that each uses the same input and output measures (in varying
amounts from one DMU to another). In some situations, however, the assumption of homogeneity among DMUs may not
apply. As an example, consider the case where the DMUs are plants in the same industry that may not all produce the
same products. Evaluating efficiencies in the absence of homogeneity gives rise to the issue of how to fairly compare a
DMU to other units, some of which may not be exactly in the same “business.” A related problem, and one that has been
examined extensively in the literature, is the missing data problem; a DMU produces a certain output, but its value is not
known. One approach taken to address this problem is to “create” a value for the missing output (e.g., substituting zero,
or by taking the average of known values), and use it to fill in the gaps. In the present setting, however, the issue isn’t
that the data for the output is missing for certain DMUs, but rather that the output isn’t produced. We argue herein that if
a DMU has chosen not to produce a certain output, or for any reason cannot produce that output, and therefore does not
put the resources in place to do so, then it would be inappropriate to artificially assign that DMU a zero value or some
“average” value for the nonexistent factor. Specifically, the desire is to fairly evaluate a DMU for what it does, rather than
penalize or credit it for what it doesn’t do. In the current paper we present DEA-based models for evaluating the relative
efficiencies of a set of DMUs where the requirement of homogeneity is relaxed. We then use these models to examine the
efficiencies of a set of manufacturing plants.
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1. Introduction
Data envelopment analysis (DEA), as originally proposed
by Charnes et al. (1978), is a methodology for evaluating
the relative efficiencies of a set of homogeneous decision-
making units (DMUs) belonging to the same technology in
the sense that each uses the same inputs and outputs, mea-
sured the same way (in varying amounts from one DMU
to another). In some situations, however, the assumption
of homogeneity among DMUs may not apply, even though
they use the same technology. As an example, consider the
case where the DMUs are plants in the same industry that
may not all produce the same products. Another is a set
of universities, where not all have the same departments;
hence, they are not homogeneous. In the current paper
we present DEA-based models for evaluating the relative
efficiencies of a set of DMUs that belong to the same
technology, but where the requirement of homogeneity is

relaxed. We then use these models to examine the efficien-
cies of a set of manufacturing plants.

Evaluating efficiencies in the absence of homogeneity
gives rise to the issue of how to fairly compare a DMU to
other units, some of which may not be exactly in the same
“business.” A related problem, and one that has been exam-
ined extensively in the literature, is the missing data prob-
lem; a DMU produces a certain output, but its value is not
known. One approach taken to address this problem is to
“create” a value for the missing output (e.g., by taking the
average of known values), and use it to fill in the gaps. For
outputs, using zero as a dummy for blank entries is another
prescribed solution. The question of blank output entries is
thus closely related to the treatment of zeros in the data
matrices (see e.g., Thompson et al. 1993 for discussion).

In the present setting, however, the issue isn’t that the
data for the output is missing for certain DMUs, but rather
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that the output isn’t produced. In the case of the universi-
ties acting as the DMUs, those without engineering depart-
ments cannot be directly compared to those that do have
such departments, and substituting a value such as zero
for this “missing” data is not appropriate. We argue herein
that if a DMU has chosen not to produce a certain output
(e.g., the missing engineering department), or for any rea-
son cannot produce that output, and therefore does not put
the resources in place to do so, then it would be inappro-
priate to artificially assign that DMU a zero value or some
“average” value for the nonexistent factor. Specifically, the
desire is to fairly evaluate a DMU for what it does, rather
than penalize or credit it for what it doesn’t do.

Potentially, the nonhomogeneous DMU issue could be
handled by breaking the set of DMUs into multiple groups,
with all members of any group producing the same outputs,
and then doing a separate DEA analysis for each group.
In this way, a DMU is evaluated against only true peers,
specifically those whose output profiles are identical to its
own. No attempt would be made to compare a DMU to
other “partial peers,” namely, those whose output profiles
overlap with, but are not identical to, those of the said
DMU. There are at least two problems with this approach.
One is a small sample issue in that there may be, in some
cases, very few (if any) actual peers. Specifically, in some
situations this would require the set of DMUs to be split
into multiple small sets to reflect the permutations. The
greater the number of splits required, the more difficult it
is to estimate meaningful efficiency. It would commonly
mean that efficiency scores would be artificially inflated.
Another problem is that true best practices for a DMU may
in fact be those practices adopted by the partial peers, and
excluding consideration of the latter may result in a fail-
ure to identify such best practices. This being the case, we
wish, wherever possible, to include all DMUs in the com-
parison set.

Section 2 describes a problem setting involving the eval-
uation of a set of manufacturing plants, where identifiable
groups of DMUs produce only proper subsets of the full
set of outputs. Section 3 is devoted to the development
of a DEA-type model for handling the general missing
output situation. Generally, this is brought about by view-
ing the DMU as consisting of mutually exclusive subgroups

Figure 1. Product lines by DMU group.
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of outputs. One important extension of the DEA concept
that has been discussed extensively in the literature is that
involving the imposition of multiplier restrictions, in partic-
ular those based upon assurance regions (AR). In a setting
where there is lack of homogeneity among DMUs, such AR
constraints can be problematic in that multiple and often
inconsistent sets of restrictions may materialize out of the
abovementioned output subgroups. Section 4 extends the
new DEA methodology to allow for consideration of such
conflicting AR constraints. Section 5 looks into other issues
that may arise relating to nonhomogeneous DMUs, and
suggests ways of handling such issues. Section 6 applies
the new methodology to data for a set of 47 plants relating
to the steel fabrication industry, as discussed above. Con-
clusions appear in §7. Supplemental material to this paper
is available at http://dx.doi.org/10.1287/opre.2013.1173.

2. Manufacturing Plants with Variable
Output Sets

To demonstrate the problem of nonhomogeneity of DMUs
in DEA, a set of 47 steel fabrication plants is considered.
The main product lines manufactured by the plants consist
of the following:

1. Sheet steel products (ladders, guards, bumpers, and
conveyors);

2. Flat bar products used mainly in building construction
(brackets, base plates, headers, and posts);

3. Pipes and cylinders (storm drains, plumbing products,
etc.);

4. Furnace and air conditioning ducts;
5. Structural steel (e.g., joists and support beams);
6. Tanks (residential and industrial).

In addition, resources employed by all plants are com-
prised of: (1) plant labor; (2) shears and saws; (3) presses
and rolling equipment; and (4) cutting torches and welding
equipment.

In this particular industry some plants choose not to man-
ufacture certain products. As shown in Figure 1, plants with
similar product lines have been grouped together into P
DMU groups Np p= 11 0 0 0 1 P , where in our particular case
P = 4. Observe, for example, that plants in N1 manufacture
products 1121315; those in N2 make products 213141516;



Cook et al.: Data Envelopment Analysis with Nonhomogeneous DMUs
668 Operations Research 61(3), pp. 666–676, © 2013 INFORMS

etc. Part of the reason for the variability of products across
a business (DMU) has to do with the focus on industrial
versus residential clientele. Some companies also may cater
more to sectors such as automotive than is true of others.

In the following section we develop a DEA-based
methodology for dealing with nonhomogeneous settings
such as that represented by Figure 1.

3. A DEA Model for DMUs with Variable
Output Sets

In an earlier paper (Cook et al. 2012), a simple case where
DMUs appeared in a 2-group setting was explored, and
affords a convenient and transparent backdrop and intro-
duction for demonstrating the methodology to be developed
herein. For completeness, we summarize some of the ele-
ments of that earlier development. Specifically, consider the
situation where n DMUs are organized into two subgroups
N1 and N2, with those in N1 producing four outputs y1,
y2, y3, y4, whereas those in N2 produce only three out-
puts y1, y2, y3, with both subgroups using the same inputs.
Figure 2 demonstrates the split of DMUs across subgroups
N1 and N2.

Hence, when we want to evaluate a DMU, say in the
first group N1, we argue that the evaluation may reasonably
be undertaken by carrying out a separate DEA analysis on
each of that DMUs 2 output subgroups R1 = 8y11 y21 y39,
and R2 = 8y49. We further argue that for DMUs in N1, one
may think of each input as being split between the produc-
tion of the subset of outputs in R1 and those in R2. (The
situation where some inputs are not separable is discussed
later in §6). If we knew what the proportional split of inputs
was between these two output groups, we could proceed in
three stages as follows:

Stage 1: In this stage we decide on a split of the inputs
across the output subgroups. For the moment and to facili-
tate transparency, let us assume it is known that �1N1

= 90%

Figure 2. A two-group setting.
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of the inputs for any DMU in N1 go toward the production
of R1, and that the remaining �2N1

= 10% go toward the
production of outputs in R2. We generalize this idea below.

Stage 2: In this stage we derive, for each DMU, effi-
ciency scores for the individual subgroups making up
that DMU. Specifically, take 90% of the inputs held by
each DMU in N1 and carry out a standard DEA analysis
of all n DMUs (using outputs in R15. Here, whenever we
are looking at a DMU j in N1, we need to remember we
have replaced the original amounts of its inputs xij by the
proportional amounts of these x̃1

ij = �1N1
xij (that have been

assigned to the outputs in R15. Note, as well, that in this
simple case, the inputs held by DMUs in N2 do not need
to be split up, because there is only one relevant subgroup
of outputs (R15. Hence, in this case, �1N2

= 1 and �2N2
= 0.

Carry out a standard DEA analysis of each of the members
in N1 using the outputs in R2 and with inputs x̃2

ij = �2N1
xij .

Recall that we do not include the members from N2 in
this analysis, because these DMUs do not produce outputs
in R2.

Stage 3: For DMUs in N2, the DEA scores arrived at in
stage 2 are the final scores. For DMUs in N1 we combine
the scores from steps 1 and 2 by taking a weighted average
(discussed below).

We point out that this idea of splitting inputs across vari-
ous subsets of outputs is similar in nature to the methodology
developed for uncovering multiple variable proportionality
(MVP), as described in Cook and Zhu (2011).

It is reasonable to argue at this point that rather than
following the above procedure, one might instead simply
assign to DMUs in N2 a value of zero for the missing output
y4 and proceed with a conventional DEA analysis. Perhaps
the best counterargument to this is that the DMUs in N2

are, under a conventional DEA analysis, at liberty to assign
a zero weight to those outputs (y4 in this case) that are
at a zero level, thereby inferring in a mathematical sense
that the DMUs in N1 are in the same “business” as those
in N2. The problem with this is that DMUs in N2, with their
limited product line, would commonly use fewer resources
than is the case for their full-service peers in N1 0 0 0 less
labor, less machine time, less inventory carrying cost, etc.
Hence, DMUs in N2 are accorded an unfair advantage over
their N1 peers. To illustrate, consider the simple example
where two DMUs have the following profiles:

DMU no. y1 y2 x

1 100 100 20
2 100 20

Here, DMU 1 is producing 100 units of each of two prod-
ucts, utilizing 20 units of a single input, whereas DMU 2
uses the same amount of input, but produces only 100
units of output 1. Clearly, under a conventional DEA
analysis, both DMUs will be deemed efficient given that
DMU 2 can assign a zero multiplier to the second output.
Suppose, however, that we knew that approximately 80% of
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DMU 1’s input went toward the production of product 1,
and the remaining 20% was used to produce product 2. Let
us present the above data in a more exact manner, replac-
ing DMU 1 by two sub-DMUs that we call DMU 1(a) and
DMU 1(b).

DMU no. y1 y2 x

1(a) 100 16
1(b) 100 4
2 100 20

Now, following the above notation, R1 is the output set
consisting of y1, and R2 contains the output y2. DMU 2 is
now evaluated properly against DMU 1(a), and since the
latter uses less input than the former, the input-oriented
efficiency score for DMU 2 is only 0.8.

Hence, our argument is that in evaluating the efficiency
of DMU 2 (or in general those in N2), the comparison to
DMU 1 (or those in N1), should be against only that part
of DMU 1’s business that it has in common with DMU 2.

The General Case

Let us now examine the general setting, and as a work-
ing example, consider the situation portrayed in Figure 1,
where a set of manufacturing plants produces a certain set
of products, but not all products are produced in all plants.
Suppose the plants fall into P mutually exclusive (M.E.)
groups, as described in §2, which we denote by 8Np9

P
p=1.

Here P = 4.
Now form M.E. output subgroups Rk, k= 11 0 0 0K, where

Rk denotes the subset of outputs with the property that all
of its members appear as the outputs of exactly the same
set of DMUs (same DMU “profile”). Specifically, if outputs
r11 r2 ∈Rk, then the DMU profiles of these two outputs are
identical. Hence, if r1 is an output for DMU groups 11214,
then r2 is an output for exactly the same DMU groups.
Also, each Rk is maximal in the sense that there is no output
r y Rk that has the same DMU profile as members of Rk.
It can be shown that for the above DMU profiles, the K
output sets are

R1=8191 R2=8291 R3=831591 R4=8491 R5=8690

A general algorithm for deriving the maximal output
groupings is found in Appendix A.

Theorem 3.1. The generated set of maximal output sub-
groups is unique.

Proof. Let us assume that the set of maximal output
subgroups is not unique. In that case there must exist at
least two different sets of output subgroups S1 and S2. It can
then be implied that there must be at least one Rk in S1 that
is different from Rk in S2. Consequently, there must exist
at least one output r ∈Rk in S1 such that r yRk in S2. This
proves that Rk in S2 is not maximal because there exists

output r y Rk that has the same DMU profile as members
of Rk. Hence, it can be concluded that for each k there
exists only one maximal Rk, and as a result there can only
be one set of maximal output subgroups. This completes
the proof.

Definition 3.1. Let LNp
denote those Rk forming the full

output set for any DMU in Np.

In the steel plant setting, LN1
= 8R11 R21 R39, LN2

= 8R21
R31 R41 R59, LN3

= 8R31R59, LN4
= 8R11R39.

To evaluate the efficiency of a given DMU, we need to
proceed in three stages. In stage 1 we decide (for the DMU
under evaluation, say jo ∈Npo5 what portion of each input i
will be allocated to each of the output subgroups Rk ∈ LNpo

;
we denote this proportion by �iRkp

o . In stage 2 we evaluate
the efficiency of the DMU in terms of each of its subgroups
Rk, and in stage 3 we take a weighted average of these
subgroup scores to get the overall efficiency of the DMU.

Stage 1: Deriving the Split of Inputs. Let us formalize
the ideas for the situation where we do not know the pre-
cise split of resources as was assumed above. Let the deci-
sion variable �iRkp

denote the proportion of input i to be
allocated to outputs in subgroup Rk of LNp

. We argue that
the best way to divide up the resources, hence determin-
ing the most appropriate alpha variables, is to do so in a
manner that results in the best overall or aggregate score
for the DMU, across all of its business subunits. Further,
we argue that the overall efficiency of a DMU jo ∈ Npo

can reasonably be represented as a weighted average (con-
vex combination) of the Rk-subgroup efficiencies (across
all output subgroups in Npo5. We point out that this argu-
ment is essentially that the DMU is the sum of its parts, and
therefore assumes there are no economies or diseconomies
of scope. In cases where it is believed such economies (dis-
economies) of scope exist, our approach may not accurately
capture efficiency at the aggregate level.

Given that it is aggregate efficiency of the DMU that we
wish to derive, and that this aggregate will be represented
as a convex combination of the Rk-subgroup efficiencies,
we set out to determine the �-split of inputs with the objec-
tive of maximizing this aggregate efficiency. With this in
mind, consider the following input-oriented radial projec-
tion model for a DMU jo ∈Npo . It is noted that the develop-
ment in this section is, in the spirit of Charnes et al. (1978),
presented from the perspective of the constant returns to
scale (CRS) technology. As demonstrated in a later section,
however, the concepts are equally valid in a variable returns
to scale (VRS) setting.

eo = max
∑

Rk∈LNpo

WRkjo

[

∑

r∈Rk

uryrjo

/

∑

i

�i�iRkp
oxijo

]

1 (1a)

subject to
∑

Rk∈LNp

WRkj

[

∑

r∈Rk

uryrj

/

∑

i

�i�iRkp
xij

]

¶ 1

∀ j ∈Np1 Rk ∈ LNp
1 p= 11 0 0 0 1 P1 (1b)
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∑

r∈Rk

uryrj −
∑

i

�i�iRkp
xij ¶ 0

∀ j ∈Np1 Rk ∈ LNp
1 p= 11 0 0 0 1 P1 (1c)

∑

Rk∈LNp

�iRkp
= 1 ∀ i1 p= 11 0 0 0 1 P1 (1d)

aiRkp
¶�iRkp

¶biRkp
∀ i1 Rk1 p=110001P1 (1e)

ur 1 �i1�iRkp
¾ 01 ∀ i1 Rk1 p0 (1f)

We point out that whereas in the above example it was
assumed that the same values of alpha applied to all DMUs,
in the general case here, the model makes provision for a
different set of alpha variables for each DMU j . The basic
idea of this model is to represent the overall efficiency of
a DMU as a convex combination (

∑

Rk∈LNpo
WRkjo

= 15 of
the efficiencies

∑

r∈Rk
uryrjo/

∑

i �i�iRkp
oxijo of the individ-

ual subgroups Rk. Although the weights WRkjo
may be any

set of values that represent the importance to be attached
to the relevant subgroups, there would appear to be at least
two reasonable and obvious choices. From an accounting
perspective, it is appropriate and reasonable to let the pro-
portion of inputs assigned to (or consumed by) a subgroup
dictate the importance of that subgroup to the overall DMU;
the subgroup assigned the largest share of resources would
be given the highest weight. An equally valid definition of
importance of a subgroup would be to base it upon the
proportion of the aggregate output for the DMU generated
by that subgroup; the subgroup that creates the greatest
value for the DMU would be weighted the highest. One
might also adopt a net contribution or profit criterion to
select weights. As a convenience in the case of the input-
oriented model adopted herein, we select the first of these
two approaches, namely, we base the weights for the sub-
group ratios on the proportions of the aggregate inputs
consumed by those subgroups. Thus, we define the weight
WRkjo

to be assigned to subgroup Rk as

WRkjo
=
∑

i

�i�iRkp
oxijo

/

∑

Rk∈LNpo

[

∑

i

�i�iRkp
oxijo

]

0 (2)

Constraints (1b) require that the multipliers chosen for a
DMU jo satisfy the condition that when they are applied
to any other DMU, the corresponding ratio (of outputs to
inputs) does not exceed unity. At the same time, and in
anticipation of the second stage, we impose the requirement
that the ratio of outputs to inputs at the subgroup level
also not exceed unity. Specifically, constraints (1c) specify
that the resource-splitting variables �iRkp

be selected in a
manner that allows the efficiency ratio corresponding to
the subset of outputs in Rk to assume a value that does
not exceed unity for some values of the multipliers ur 1 �i.
We note that in the presence of (1c), constraints (1b) are
redundant and may be dropped from the model.

Constraints (1d) specify that the � values assigned to the
subgroups of outputs corresponding to any set p sum to
unity for each i. Finally, constraints (1e) place lower and

upper limits on the sizes of the � variables. It is worth
noting that in a situation wherein a particular input may
not in fact impact certain outputs or output subgroups, the
corresponding �iRkp

can of course be set to zero.

The Equivalent Linear Formulation

Problem (1) in its current form is nonlinear. To facilitate
linearization, first note that by virtue of the definition we
choose to use for the WRkjo

as given by (2), the objective
function (1a) becomes

eo = max
[

∑

Rk∈LNpo

∑

r∈Rk

uryrjo

/

∑

i

�ixijo

]

0 (1a′)

Specifically, maximizing the weighted average of sub-
group ratios is equivalent to maximizing the overall effi-
ciency ratio of the DMU.

Now make the change of variables ziRkp
= �i�iRkp

, and
note that
∑

Rk∈LNp

�iRkp
=1 ⇒ �i

∑

Rk∈LNp

�iRkp
=�i ⇒

∑

Rk∈LNp

ziRkp
=�i

Using the usual transformation t = 1/
∑

i �ixijo (see
Charnes et al. 1978), and defining �r = tur , �i = t�i,
�iRkp

= tziRkp
, problem (1) becomes

eo = max
∑

Rk∈LNpo

∑

r∈Rk

�ryrjo (3a)

subject to
∑

Rk∈LNp�

(

∑

i

�iRkp
oxij�

)

= 11 (3b)

∑

r∈Rk

�ryrj −
∑

i

�iRkp
xij ¶ 0

∀ j ∈Np1 Rk ∈ LNp
1 p= 11 0 0 0 1 P1 (3c)

∑

Rk∈LNp

�iRkp
= �i ∀ i1 p= 11 0 0 0 1 P1 (3d)

�iaiRkp
¶ �iRkp

¶ �ibiRkp

∀ i1 Rk ∈ LNp
1 p= 11 0 0 0 1 P1 (3e)

�r 1�i1�iRkp
¾�1 ∀r1 i1 Rk1 p=110001P 0 (3f)

Stage 2: Deriving the Subgroup Efficiency Scores. Note
that the purpose of stage 1 is to derive, for each DMU
jo in Npo , the “optimal” proportions of inputs �̂iRkp

o to
be assigned to output subgroups Rk. These are given by
�̂iRkp

o = �̂iRkp
o/�̂i. When these proportions are available

(from the solution to Model (3)), one can then allocate to
subgroup Rk the appropriate amount of input xijo , namely
x̃k
ijo

= �̂iRkp
oxijo . The conventional CCR DEA model (see

Charnes et al. 1978) can then be applied to each of the
subgroups Rk of jo. Specifically, determine MRk

, the set of
all DMU groups that have Rk as a member, that is

MRk
= 8Np such that Rk ∈ LNp

90 (4)

Note, for example, in the six-output steel fabrica-
tion application described above, MR1

= 8N11N49, MR2
=

8N11N291 0 0 0 1 etc.
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Now, for each DMU jo, and each subgroup Rk� corre-
sponding to the set Npo that contains jo as a member, solve
the DEA model:

eRk� jo
= max

∑

r∈Rk�

�ryrjo

subject to
∑

i

�ix̃
k�

ijo
= 11

∑

r∈Rk�

�ryrj −
∑

i

�ix̃
k�

ij ¶ 0

j ∈Np1 for Np ∈MRk�
1

�r 1 �i ¾ �0
(5)

Stage 3: Deriving the Aggregate Efficiencies. The overall
efficiency score of the DMU jo is now derived by tak-
ing a weighted average of the subgroup scores obtained
in stage 2, using the WRkjo

defined in (2). It should be
pointed out that in computing WRkjo

an appropriate set of
input multipliers �i needs to be chosen. Furthermore, the
multipliers need to be computed in an environment where
all subunits are being compared simultaneously. The aggre-
gate Model (3) provides such an environment. That is, in
(3) when DMU jo is being evaluated, the input portion of
expression (3c), namely

∑

i �iRkp
oxijo (for j = jo5, repre-

sents the value of that DMU’s resources that are assigned
to subgroup Rk. The total value of all resources consumed
by DMU jo is given by

∑

i �ijo
xijo , which is scaled to unity

as per constraint (3b). Hence, the weights WRkjo
reduce to

WRkjo
=
∑

i �iRkp
oxijo . Note again that this set of weights is

dependent on the particular DMU jo under investigation, to
reflect the fact that the proportion of inputs allocated to the
kth subunit is DMU specific.

The model developed in this section permits one to eval-
uate efficiencies of a set of DMUs where output profiles
are not homogeneous across those units. The proposed
approach portrays a DMU’s performance as a convex com-
bination of its component parts (subgroups). It is important
to point out that in the above structure we do not con-
sider restrictions that might be imposed on the multipliers
�, � (referring to Model (3)), other than those that restrict
efficiency ratios to not exceed unity. This is raised here
because such restrictions may lead to infeasibilities that
would normally not occur in the conventional DEA setting.
The following section investigates the role that multiplier
restrictions play in this more general environment. First,
however, we point to related literature.

Relation to Previous Work

The methodology developed above is related to two strands
of previous research. First, network DEA, as originated by
Färe and Grosskopf (1996), sets out to evaluate DMU per-
formance by examining the internal subprocesses that make
up the DMU. Whereas one can define performance in many
ways, if one concentrates on technical efficiency, network
DEA provides for both subprocess efficiency scores as well

as an overall score for the DMU itself. Thus, the approach
herein is a form of network DEA analysis in that the sub-
processes are the subunits as we have described above.
Arguably, one difference between our methodology and that
characterizing network DEA is that our definition of the
overall performance of the DMU is that it is a weighted
average of the subunit efficiencies. What is normally done
in network DEA is to use a conventional DEA model to
describe overall efficiency in terms of all inputs entering the
DMU versus all outputs leaving the DMU. As well, subpro-
cess shares of inputs would normally be known in advance
(except in allocative efficiency settings), as opposed to those
shares being derived as part of the optimization procedure,
as is the situation herein. Furthermore, there is no clear
direct connection in network DEA between the efficiency
score for the overall DMU and the scores of the subpro-
cesses. We provide that connection in the methodology pre-
sented here.

Other related research carried out by Cook and Hababou
(2001) and by Cook et al. (2000) is closer still to work done
herein. In that former work, the DMUs are bank branches
that are viewed as consisting of two components or sub-
units, namely sales and service. Those authors develop an
overall efficiency score for the branch using a model analo-
gous to (1) above. Their model sets out to optimize the ratio
of total weighted outputs to total weighted inputs for the
overall branch. Component efficiencies (sales and service)
are then simply taken as the ratio of weighted outputs to
inputs for those components,

∑

r∈Rc
�ryrj/

∑

i∈I �ikxij simi-
lar to expression (3c). Here Rc denotes the output bundles
for either the sales or service component. The problem
with using this ratio to capture component efficiency is that
it doesn’t properly capture the component’s performance.
Specifically, since it is overall branch performance that is
being maximized, there is no internal mechanism for insur-
ing that at the same time component scores are appropri-
ately set, consistent with DEA constructs. Our model herein
takes the next important step (step 2 above) of using the
resource split across the subunits to find the maximal effi-
ciencies for each of those subunits, and then taking the
weighted average of those maximal scores (step 3) to arrive
at the score for the DMU. In addition, our methodology
herein identifies the subunits into which to decompose the
DMU, whereas the earlier research pertained only to those
applications where components or subunits are well defined
in advance. Finally, the earlier work did not consider the
issue of conflicting AR constraints as we do herein. This
topic is covered in the next section.

4. AR Restrictions on Pairs of
Input Variables

Many different forms of multiplier restrictions in DEA anal-
yses have been discussed in the literature, but none more
than those that take the form of assurance regions (AR).
AR constraints, as first discussed by Thompson et al. (1990),
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involve the placing of bounds on the ratios of pairs of mul-
tipliers. The resulting DEA-AR model has been employed
extensively in numerous performance measurement set-
tings. In this section, we address the problem of nonho-
mogenous DMUs in the presence of such AR restrictions
on input multipliers, and the inherent problems that can
arise thereon. It should be noted that although the dis-
cussion focuses on input multipliers, the concepts apply
equally to the output side.

Let us assume, in reference to Model (3), that for each
output subgroup Rk AR constraints of the form ckiL�i2

¶
�i1

¶ ckiU�i2
1 k = 11 0 0 0 1K1 have been specified. As indi-

cated above, such constraints identify the relative magni-
tudes of pairs of input multipliers �i1

to �i2
within output

subgroup Rk. It can be argued that all such constraints
across all output subgroups Rk can be expressed in the
form ckiL ¶ �i/�n ¶ ckiU , such that �n is the designated
numeraire, the multiplier for one of the inputs against
which all other multipliers are compared (see Thompson
et al. 1990). Given that subgroups of outputs are in some
senses a signal that multiple business units are operating
under one umbrella, it is often the case that multiple sets of
AR constraints on any given pair of multipliers can emerge
simultaneously. Moreover, such multiple sets can result in
infeasibility. For example, let us assume that the follow-
ing constraints 3 ¶ �2/�1 ¶ 5 and 6 ¶ �2/�1 ¶ 8 have been
specified for output subgroups Rk1

and Rk2
, respectively.

If these two sets of restrictions were to be imposed simulta-
neously on Model (3), infeasibility would obviously result.
This being the case, there is reason to look for a mechanism
that will permit one to fold such multiple sets of constraints
involving any multiplier �i into a single set, thereby insur-
ing that Model (3) is feasible.

Assume that AR constraints c
k1
iL ¶ �i/�n ¶ c

k1
iU and c

k2
iL ¶

�i/�n ¶ c
k2
iU have been imposed within Rk1

and Rk2
, respec-

tively. To reduce this pair of AR restrictions to a sin-
gle expression, we propose focusing attention on one of
the bounds, say the lower bound. It is observed that by
expressing

c
k2
iL ¶ �i/�n ¶ c

k2
iU (6)

in the form 4c
k1
iL/c

k2
iL5c

k2
iL ¶ 4c

k1
iL/c

k2
iL5�i/�n ¶ 4c

k1
iL/c

k2
iL5c

k2
iU ,

and by subsequently making the following transformation
�′
i = 4c

k1
iL/c

k2
iL5�i, (6) can be converted to c

k1
iL ¶ �′

i/�n ¶
4c

k1
iL/c

k2
iL5c

k2
iU . Consequently, for each DMU, jo ∈MRk2

1 �ixij

can be replaced by 4c
k1
iL/c

k2
iL5�ixij4c

k2
iL/c

k1
iL5 or �′

ixij4c
k2
iL/c

k1
iL5,

meaning that by scaling the multiplier �i by a factor
c
k1
iL/c

k2
iL , we can scale the data for xi in MRk2

by the recip-
rocal of that factor.

To illustrate, refer again to the above example of con-
straints 3 ¶ �2/�1 ¶ 5 and 6 ¶ �2/�1 ¶ 8 in subgroups Rk1

and Rk2
, respectively, and assume that input 1 is used as the

numeraire. To arrive at a single set of constraints involv-
ing �2, we first replace the constraint 6 ¶ �2/�1 ¶ 8 with
3
6 6 ¶ 3

6�2/�1 ¶ 3
6 8. By making the transformation �′

2 =
3
6�2,

we can then replace �2x2 in MRk2
with 3

6�24
6
3x25 or �′

24
6
3x25.

Specifically, by scaling �2 down by a factor 3
6 we can

scale up the data for x2 in subgroup MRk2
by a factor 6

3 .
Along the same lines, the upper bound on �i/�n is replaced
by c̄

k2
iU = 4c

k1
iL/c

k2
iL5c

k2
iU .

This exercise is then repeated for all other output sub-
groups that have AR constraints involving multipliers �i

and �n. Let us define

c̄iL = c
k1
iL (7)

c̄iU = min8c̄ k1
iU 1 c̄

k2
iU 1 0 0 091 (8)

where it is understood that the minimum in (8) is taken
over all Rk that contain an AR constraint involving the two
variables �i and �n. Expression (6) can now be replaced by

c̄iL ¶
�i

�n

¶ c̄iU 0 (9)

To repeat, assume a set of AR restrictions on a pair of
input variables 4�i1 �n5 has been imposed within various
output subgroups Rk. That is, the AR restrictions can vary
by output subgroup. Let one of these subgroups, Rk̂, be
the base against which all other sets will be compared. As
a result of the adjustments made to reduce these multiple
restrictions to a single AR constraint, the corresponding
inverse adjustments must be made to variable xi within
each of the Rk subgroups. (We are assuming that �n is the
designated numeraire for this pair of variables). Let us now
denote the adjusted input data by xikj, that is,

xikj = 4ckiL/c
k̂
iL5xij 0 (10)

With these adjustments having been made to the input
data, Model (3) for a given DMU jo in DMU group Npo

now takes the form

eo = max
∑

Rk∈LNp�

∑

r∈Rk

�ryrjo (11a)

subject to
∑

Rk∈LNp�

(

∑

i

�iRkp
oxikjo

)

= 11 (11b)

∑

r∈Rk

�ryrj −
∑

i

�iRkp
xikj ¶ 0

∀ j ∈Np1 Rk ∈ LNp
1 p= 11 0 0 0 1 P1 (11c)

∑

Rk∈LNp

�iRkp
= �i ∀ i1 p= 11 0 0 0 1 P1 (11d)

�iaiRkp
¶ �iRkp

¶ �ibiRkp

∀ i1 Rk ∈ LNp
1 p= 11 0 0 0 1 P1 (11e)

�nc̄iL ¶ �i ¶ �nc̄iU ∀ i1 i 6= n1 (11f)

�r 1�i1�iRkp
¾�1 ∀r1 i1 Rk1 p=110001P 0 (11g)

Note that (11f) represents the final constraints resulting
from the amalgamation of the multiple AR restrictions cor-
responding to the various Rk subgroups.

In the case of the stage 2 subgroup optimization, where
the efficiency of subgroup Rko is to be determined, the
AR-equivalent of Model (5) is given by (12). Here, it is
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important to note that only AR restrictions relevant to this
particular output subgroup, and no AR restrictions outside
this subgroup, are invoked. This being the case, input data
requires AR-adjustment only in cases where multiple AR
restrictions on a pair of variables arise. This latter can hap-
pen when constraints (on a given pair of variables) are
invoked in one of the output subgroups Rk that are differ-
ent from those invoked in another subgroup. We use the
notation x̂ko

ij to denote the alpha-adjusted, and AR-adjusted
version of input xi consumed by output subgroup Rko .
Constraints (12d) reflect the imposed AR constraints. The
following model is now solved for each of the output
subgroups, Rko for each DMU jo:

eRko jo
= max

∑

r∈Rko

�ryrjo (12a)

subject to
∑

i

�ix̂
ko

ijo
= 11 (12b)

∑

r∈Rko

�ryrj −
∑

i

�ix̂
ko

ij ¶ 0

j ∈Np1 for Np ∈MRk�
1 (12c)

�nc
k�

iL ¶ �i ¶ �nc
k�

iU ∀ i1 i 6= n1 (12d)

�r 1 �i ¾ �0

5. Other Considerations

5.1. Nonseparable Inputs

In many instances there can be inputs that do not lend them-
selves to subdivision in the manner described above. If, for
example, in the analysis of the steel fabrication plants, one
wished to include as an input a quality measure pertaining
to supplier reliability, it would appear to be unreasonable
to suggest subdividing this factor, and assigning portions of
it across the various subunits; such a factor, in its entirety,
would affect the outputs in each subunit k. Generalizing, let
us use the notation Is , Ins to denote the sets of separable and
nonseparable inputs, respectively. In the discussion thus far,
all inputs have been assumed to belong to Is . The efficiency
ratio for a given subgroup Rk within DMU jo can now
be expressed in the form

∑

r∈Rk
uryrjo/4

∑

i∈Is
�i�iRk

xijo +
∑

i∈Ins
�
Rk
i xijo5, where �

Rk
i is the worth or weight assigned

to the nonseparable input xijo 1 i ∈ Ins , and represents the
impact of that input on the outputs in Rk. Note that we are
permitting this weight to be different from one subgroup to
another. Following the logic of (2), we define the weight
attached to the efficiency ratio for subgroup Rk by

WRkjo
=

[

∑

i∈Is

�i�iRkp
oxijo +

∑

i∈Ins

�
Rk
i xijo

]

/

∑

Rk∈LNpo

[

∑

i∈Is

�i�iRkp
oxijo +

∑

i∈Ins

�
Rk
i xijo

]

0 (13)

The optimization model for this more general case would
be identical in form to (3) with the exception that con-
straints (3b) and (3c) are replaced by
∑

i∈Is

�ixijo +
∑

Rk∈Npo

(

∑

i∈Ins

�
Rk
i

)

xijo = 1 (4b′)

and
∑

r∈Rk

�ryrj −
∑

i∈Is

�kixij −
∑

i∈Ins

�
Rk
i xij ¶ 01 ∀ j ∈Np1 (3c′)

respectively, to account for the two types of inputs. Fur-
thermore, constraints (3d) and (3e) apply only to separable
inputs i. Here, �Rk

i = t�
Rk
i under the usual transformation

as discussed above.

5.2. Variable Returns to Scale

The development above is based on a CRS technology. In
the situation where a VRS technology is deemed to be
more appropriate, it is sufficient to replace terms such as
∑

r∈Rk
uryrj by

∑

r∈Rk
uryrj − uo. An advantage of the VRS

formulation is that the sign of uo is subgroup dependent,
and signals whether the projected version of that (sub)DMU
will be experiencing increasing, constant, or decreasing
returns to scale. This can provide useful information to
management regarding the returns to scale orientation of
various parts of the business, and may aid in deciding how
to redistribute resources, given that common resources (Is5
are shared among the subgroups.

5.3. Output Orientation

The development throughout has assumed that efficiency is
to be viewed from the perspective of an input orientation.
If the organization intends to improve efficiency by pursu-
ing output expansion rather than input reduction, then an
output orientation would be an appropriate model structure
to use. Specifically, Model (1) would be replaced by

eo=min
∑

Rk∈LNpo

WRkjo

[

∑

i

�i�iRkp
oxijo

/

∑

r∈Rk

uryrjo

]

(13a)

subject to
∑

Rk∈LNp

WRkj

[

∑

i

�i�iRkp
xij

/

∑

r∈Rk

uryrj

]

¾1

∀ j ∈Np1 Rk∈LNp
1 p=110001P1 (13b)

∑

i

�i�iRkp
xij−

∑

r∈Rk

uryrj ¾0

∀ j ∈Np1 Rk∈LNp
1 p=110001P1 (13c)

∑

Rk∈LNp

�iRkp
=1 ∀ i1 p=10001P1 (13d)

aiRkp
¶�iRkp

¶biRkp
∀ i1 Rk1 p=110001P1 (13e)

ur 1�i1�iRkp
¾01 ∀ i1 Rk1 p0 (13f)

As discussed earlier, it appears equally valid to base the
definition of weights WRkjo

on either inputs consumed or
outputs generated. In the case of the output-oriented model,
it is therefore reasonable to weight the efficiency ratios
according to the latter (outputs generated). Specifically, if
the weight on subgroup Rk is chosen as

WRkjo
=
∑

r∈Rk

uryrjo

/

∑

Rk∈LNpo

[

∑

r∈Rk

uryrjo

]

1 (14)
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then the above aggregate objective function (13a) becomes
the ratio of overall DMU input to overall DMU output,
namely,

eo = min
∑

Rk∈LNpo

[

∑

i

�ixijo

/

∑

r∈Rk

uryrjo

]

0 (13a′)

We now apply the above methodology to the derivation
of efficiencies of a set of steel fabrication plants.

6. Application
To demonstrate the application of the models developed
in the earlier sections, data on a set of 47 plants, as
per Appendix C, Tables C.1 and C.2, were considered.
These plants are grouped into four DMU subgroups N1

to N4 such that plants belonging to any DMU group
Np produce identical products. The profiles of the four
groups of DMUs Np are as described in §2. For exam-
ple, DMUs in N1 produce outputs 1, 2, 3, and 5. Note
from Appendix C, Table C.1, that N1 consists of DMUs
113141619110111119132135139, and 46.

In the application considered herein, AR restrictions play
an important role, particularly on the input side. They pro-
vide a way to bring resource trade-offs into the picture.
Input multipliers effectively mimic resource costs. Hence,
whereas it is the case in many real-world settings that the
development of such restrictions can be problematic, in
manufacturing situations resource costs often provide the
appropriate route to deriving the desired restrictions. To
that end, data were collected relating to per-unit costs for
each of the four inputs. The data provided in Table 1 repre-
sent per-unit costs incurred during the last quarter of 2010.
For example, the range of cost estimates specified for labor
(x15 for the last quarter of 2010 is from $5,000 to $7,500
per plant employee (wages and benefits). Although there is
no implied variation in labor costs across the five bundles,
k = 112131415, wage rates can differ from plant to plant
and over time due to the mix of full-time and part-time
labor used. For this reason a range is given for this input.

For the other three inputs, machine “rates” were assumed
to be the estimated quarterly costs of depreciation, routine
maintenance, and unforeseen breakdown costs. In the case
of the shearing machines, for example, the estimated quar-
terly cost (depreciation and maintenance) of operating one
machine would generally vary between $7,000 and $10,000
per quarter in the case of output bundle k= 1, and $14,000

Table 1. Input cost rates per machine per quarter.

Quarterly costs in thousands of dollars

Input k= 1 k= 2 k= 3 k= 4 k= 5

Labor $5–$7.5 $5–$7.5 $5–$7.5 $5–$7.5 $5–$7.5
Shears $7–$10 $14–$19 $14–$19 $7–$10 $9–$12
Presses $6–$9.6 $16–$21 $12–$15 $6–$9.6 $5–$9
Lathes $7–$11 $7–$11 $7–$11 $7–$11 $7–$11

Table 2. AR constraints.

i= 2 i= 3 i= 4

K = 1 0093 ¶ �2

�1
¶ 2 008 ¶ �3

�1
¶ 1092 0093 ¶ �4

�1
¶ 202

K = 2 1087 ¶ �2

�1
¶ 308 2013 ¶ �3

�1
¶ 402 0093 ¶ �4

�1
¶ 202

K = 3 1087 ¶ �2

�1
¶ 308 106 ¶ �3

�1
¶ 3 0093 ¶ �4

�1
¶ 202

K = 4 0093 ¶ �2

�1
¶ 2 008 ¶ �3

�1
¶ 1092 0093 ¶ �4

�1
¶ 202

K = 5 102 ¶ �2

�1
¶ 204 0067 ¶ �3

�1
¶ 108 0093 ¶ �4

�1
¶ 202

and $19,000 in the case of k = 2. The increased stress
placed on the equipment in the production of flat bar prod-
ucts versus that created in the manufacture of sheet steel
products, contributes to the difference in cost between the
two product groupings.

Table 1 can be used to set AR constraints corresponding
to the various pairs of multipliers. See Table 2 for the full
set. Note that the lower bounds on all constraints ckiL ¶
�i/�n ¶ ckiU can be expressed as the ratio of the lowest value
�i can take divided by the highest value �n can assume.
Similarly, the upper bounds are defined as the ratio of the
highest value �i can take divided by the lowest value taken
by �n. For example, given that the range for labor cost is
$5–$7.5 and the range for shears is $7–$10 in the case of
k = 1, the AR constraints corresponding to �2 and �1 are
expressed as 47/7055¶ 4�2/�15¶ 410/55.

All constraints are expressed in terms of labor (�15,
which has been chosen as the numeraire. Refer to Appendix
B for a detailed discussion on generating a single set of
AR constraints for each pair of input multipliers.

Following the methodology presented in §3, Model (11)
is applied to the data of Appendix C, Tables C.1 and C.2.
Recall that the purpose of solving this stage 1 problem is
to facilitate an apportioning of the inputs to the subunits
that make up the DMU. To bound the values of � so that
a representative apportioning occurs, survey data from a
sample of the plants suggested the following ranges:
N1: (0.15, 0.80)
N2: (0.10, 0.60)
N3: (0.20, 0.90)
N4: (0.20, 0.90).

It is noted that the ranges vary according to the DMU
subgroup Np and are related to the number of subunits K
comprising the subgroup. Specifically, the more subunits
that Np contains, the narrower are the ranges. Recall that

LN1
= 8R11R21R391 LN2

= 8R21R31R41R591

LN3
= 8R31R591 LN4

= 8R11R390

For example, since DMU subgroup N2 contains
four subunits, a minimum of 10% and a maximum of 60%
of each input can be assigned to any subunit. In the case
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of N3, however, which contains only two subunits, the alpha
range is wider.

Applying Model (11), the �̂iRkp
for each DMU jo in Np

have been derived. The results are displayed in Appendix C,
Tables C.3–C.7. Recall that �̂iRkp

values are used to adjust
the corresponding data in each DMU subgroup MRk

, in
preparation for the subunit analysis. Specifically, using the
appropriately adjusted data, Model (12) is applied to each
DMU in MRk

, resulting in the subunit scores displayed in
Appendix C, Table C.9. To derive an overall efficiency
score for each DMU jo in Np, the relevant subunit scores
are combined using the weights WRkjo

, as per Appendix C,
Table C.8. The resulting overall scores are presented along
with their relevant subunit scores in Appendix C, Table C.9.

It is noted that none of the DMUs are technically effi-
cient. Recall that a DMU can be efficient only if all sub-
units for that DMU are efficient as well. However, within
each subgroup Rk at least one of the (sub) DMUs in MRk

is efficient.
To demonstrate the degree of sensitivity of the over-

all efficiency scores (as per the rightmost column in
Appendix C, Table C.9) to the choice of alpha ranges, the
above analysis was repeated, but with two new sets of alpha
ranges. A summary of the results is as follows:

Scenario Lower and upper Average absolute change
limits on �̂iRkp

in overall efficiency scores

1 (0.10, 0.80) 0.12219
2 (0.05, 0.90) 0.33868

Based on this, it would appear that very wide ranges such
as those given as scenario 2 result in substantial swings
in the overall efficiency scores when compared with base
results as described above. Somewhat tighter ranges such
as those in Scenario 1 significantly decrease the variation
in efficiency scores vis-à-vis the base results.

To complete the analysis of this section, it is worth com-
paring the efficiency results obtained using our model with
what would have occurred had conventional DEA analy-
sis been carried out, by simply inserting zeros in the data
for any missing outputs. Two levels of analysis were con-
ducted, namely one without any AR constraints, and one
with the AR constraints applied. The results are displayed
in Appendix C, Table C.10. It is noted that having replaced
all blank spaces with zeros, a significant number of DMUs
are rendered technically efficient. In the non-AR versions of
our model and the conventional DEA model, we note that
there are 3 efficient DMUs in the former versus 33 in the
latter. The existence of the very large number of efficient
units (33) with the conventional model is partially due to
the large number of outputs and inputs involved, as com-
pared to the total number of DMUs. A somewhat more real-
istic set of scores arises with the conventional model in the
presence of AR constraints, where only 17 of the DMUs
are efficient. Specifically, 17 of the 47 DMUs have a score
of 100%, and another 8 have scores at the level of 90%
or above. Arguably, part of the problem as well is that the

absence of outputs in the various DMUs may be providing
the opportunity to DMUs in any given subset Np to negate
the influence of other DMUs that are in different subsets.

7. Conclusions
This paper has examined efficiency measurement in a set-
ting where decision-making units are nonhomogeneous.
This environment violates the usual assumption in DEA
that DMUs are all in the same “business,” meaning that
each DMU produces some amount of each output in a
given output bundle, albeit in differing amounts from one
DMU to the next. The problem of “missing” outputs has
been addressed in the literature, but only in the context that
either the missing value exists, but is not available to the
analyst, or that the missing item is a quantity that the DMU
intended to produce (and resources were expended in an
effort to do so), but for whatever reason none was actually
created. In this case, the value assigned to that output is
legitimately taken to be zero.

Herein, we argue that in many situations the output mix
can differ substantially from one DMU to another, meaning
that the usual assumption of homogeneity does not hold,
and therefore the DMUs involved are not directly com-
parable. Substituting zero or some other computed value
when an output is missing, as a means of rendering DMUs
“comparable,” appears to be ad hoc, and fails to properly
address the efficiency evaluation problem in a direct way.
To address this apparent gap in the DEA literature, we
present a DEA-like methodology that views the DMU as
consisting of a set of business subunits. The overall effi-
ciency of a DMU is then taken to be a weighted aver-
age (convex combination) of the efficiency scores for the
subgroups that make up that DMU. The methodology is
applied to the efficiency evaluation problem for a set of
steel fabrication plants.

One criticism of this approach is that it presumes that the
DMU can be viewed as being the sum of its parts, meaning
that economies or diseconomies of scope are assumed to be
nonexistent. In cases where this assumption is violated, our
approach may fail to accurately capture the performance
of the DMU. See, for example, Pulley and Braunstein
(1992). Capturing economies of scope is difficult in settings
where one does not have the benefit of observing an entity
operating by itself, as well as in a mode where it is com-
bined with other entities. As noted from the literature, data
on mergers and acquisitions can be a way in which one
might reasonably examine an entity in both states. There is
also the added difficulty of separating economies of scope
from economies of scale. Is the increase in output of a given
product, when a new product is added to the mix, due to
scope or simply a result of increased size of the operation
(scale)? Current research by the authors is aimed at inves-
tigating several firms in the same industry (much like the
data set herein), where product lines have been added over
time. In this way, it is hoped that impact of economies of
scope can be studied.
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