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Abstract

This paper develops a necessary and su�cient condition for the presence of (input) congestion.
Relationships between the two congestion methods presently available are discussed. The equivalence
between FaÈ re et al. [12,13] and Brockett et al. [2] hold only when the law of variable proportions is
applicable. It is shown that the work of Brockett et al. [2] improves upon the work of FaÈ re et al. [12,13]
in that it not only (1) detects congestion but also (2) determines the amount of congestion and,
simultaneously, (3) identi®es factors responsible for congestion and distinguishes congestion amounts
from other components of ine�ciency. These amounts are all obtainable from non-zero slacks in a
slightly altered version of the additive model Ð which we here further extend and modify to obtain
additional details. We also generate a new measure of congestion to provide the basis for a new uni®ed
approach to this and other topics in data envelopment analysis (DEA). # 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Congestion, as used in economics, refers to situations where reductions in one or more
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inputs generate an increase in one or more outputs. FaÈ re and Svensson [15] de®ne and develop
the topic of congestion in a form that they relate to the law of variable proportions. FaÈ re and
Grosskopf [11] subsequently extend and develop this in the context of data envelopment
analysis (DEA) which gives the FaÈ re±Svensson operationally implementable form. This is done
under assumptions of strong and weak input disposabilities. Finally, FaÈ re et al. [12,13] suggest
a procedure for identifying input factors responsible for the congestion.
In FaÈ re and Grosskopf's [11] congestion model, the law of variable proportions requires

some inputs be held constant. However, Brockett et al. [2] show that this condition may not be
necessary. See the Appendix in [2] which allows congestion to be eliminated by reducing all
inputs without changing their proportions. For example, in an underground coal mine with too
many men and too much equipment, these two inputs may be simultaneously reduced without
altering their proportions in order to increase the output of coal.
Nor does this end the problems to be dealt with under the approach by FaÈ re, Grosskopf and

their associates. Among other things, their use of the assumption of ``free disposal'' in either its
strong and weak forms, leads to anomalous examples such as situations in which two decision
making units (DMUs) may be accorded the same e�ciency rating even though one dominates
the other and does so strictly in all inputs and outputs that are associated with non-zero slacks.
This paper therefore presents results from research directed to a broadened range of
possibilities for which we adopt the following de®nition of congestion from Cooper et al. [9].
See also Brockett et al. [2] and Cooper et al. [7]. The de®nition we use is:

De®nition 1 (congestion). Evidence of congestion is present when reductions in one or more
inputs can be associated with increases in one or more outputs Ð or, proceeding in reverse,
when increases in one or more inputs can be associated with decreases in one or more outputs
Ð without worsening any other input or output.

To implement this de®nition, Brockett et al. [2] developed a new DEA-based approach to
capture input congestion and identify its sources and amounts. They also provide an
Appendix that examines how their approach relates to that in FaÈ re et al. [12,13]. A
supplementary note by FaÈ re and Grosskopf [14] then presents an example to further clarify
matters. The current paper studies the relationship between these two DEA congestion
approaches. After showing respects in which the two are equivalent, a necessary and su�cient
condition is developed for the presence of congestion. A further re®nement and extension of
the approach in Brockett et al. [2] is then e�ected to improve upon both of their earlier
approaches. Further, it provides a new overall scalar measure of congestion that incorporates
all ine�ciencies in accordance with the criteria for a satisfactory measure as speci®ed in
Cooper et al. [8].
The remainder of this paper is organized as follows. Section 2 provides the congestion

approach by FaÈ re and Grosskopf [11], FaÈ re et al. (FGL) [12,13] and related DEA models. It is
shown that DEA congestion is related to the non-zero slacks in DEA models. See De®nitions 2
and 3. Section 3 studies the relationship between the DEA congestion approaches by FGL
[11,12] and Brockett et al. (BCSW) [2]. Section 4 illustrates how to measure congestion by the
additive DEA model [5,6]. Section 5 concludes.
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2. Congestion and slacks

In this section, we discuss the congestion measure developed by FGL [12,13]. In order to
facilitate our development, we ®rst provide the following congestion-related DEA models,
which are synthesized as follows.1

Suppose we have n DMUs. Each DMUj, j = 1,2, . . . , n, produces s di�erent outputs, yrj
(r = 1,2, . . . , s ), using m di�erent inputs, xij (i = 1,2, . . . , m ). As given in Charnes et al. [3] the
e�ciency of a speci®c DMUo can be evaluated by either of the following two DEA models:

Input-orientation model

y� � min y

s:t:
Xn
j�1

ljx ijEyxio i � 1, 2, . . . , m

Xn
j�1

ljyrjeyro r � 1, 2, . . . , s �1�

Xn
j�1

lj � 1

lje0 j � 1, . . . , n

and

Output-orientation model

f� � max f

s:t:
Xn
j�1

ljx ijExio i � 1, 2, . . . , m �10�

Xn
j�1

ljyrjefyro r � 1, 2, . . . , s

1 For more detailed discussion on the properties on these models, refer to Charnes et al. [6].
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Xn
j�1

lj � 1

lje0 j � 1, . . . , n:

where xio and yro are, respectively, the ith input and rth output for the DMUo under
evaluation. Associated with the m+s input and output constraints in Eqs. (1) or (1 '), some
non-zero input and output slacks, sÿi and s+r , may exist in some alternate optimal solutions. In
order to handle this possibility, we employ the following model where the e�ciency score is
®xed via Eqs. (1) (or (1 ')) after which the sum of slacks is maximized as follows:

max
Xm
i�1

sÿi �
Xs
r�1

s�r

s:t:
Xn
j�1

ljx ij � sÿi � y�xio i � 1, 2, . . . , m

Xn
j�1

ljyrj ÿ s�r � yro r � 1, 2, . . . , s �2�

Xn
j�1

lj � 1

lj, sÿi , s
�
r e0

or

max
Xm
i�1

sÿi �
Xs
r�1

s�r

s:t:
Xn
j�1

ljx ij � sÿi � xio i � 1, 2, . . . , m

Xn
j�1

ljyrj ÿ s�r � f�yro r � 1, 2, . . . , s �20�

Xn
j�1

lj � 1
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lj, sÿi , s
�
r e0

where y� (f�), the optimal value of Eqs. (1) ((1 ')) is ®xed as shown for the input (output)
constraints. We then have:

De®nition 2 (DEA slacks). An optimal value of sÿi and s+r in Eqs. (2) (or (2 ')), which we
represent by sÿ�i and s+�r , are respectively called DEA input and output slack values.

De®nition 3 (DEA e�ciency). A DMUo evaluated in the above manner will be found to be
DEA e�cient if and only if the following two conditions are satis®ed: (i) y�=1 (or f�=1); (ii)
sÿ�i =s+�r =0 for all i and r.

Model (1) (or (1 ')) above satis®es strong disposability and hence do not address the issue of
non-zero slacks in some, but not all, optima. If we assume weak input disposability as in FGL
[12,13], we have the following DEA models to use in a two-stage evaluation of congestion, viz.

Input-orientation

b� � min b

s:t:
Xn
j�1

ljx ij � bxio i � 1, 2, . . . , m

Xn
j�1

ljyrjeyro r � 1, 2, . . . , s �3�

Xn
j�1

lj � 1

lje0 j � 1, . . . , n

and

Output-orientation

b̂
� � max b̂

s:t:
Xn
j�1

ljx ij � txio i � 1, 2, . . . , m
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Xn
j�1

ljyrjeb̂yro r � 1, 2, . . . , s

Xn
j�1

lj � 1 �30�

0EtE1 and lje0 j � 1, . . . , n

Note that, for instance, the di�erence between Eqs. (1) and (3) is that input inequalities are
changed into input equalities so that non-zero slack cannot be associated with any input.
Further, every xio is multiplied by the scalar b so the associated value of b� results from a
radial measure that corresponds to the way y� is obtained. The input congestion measure is
then de®ned as the following ratio by FGL [12,13]:

�Input-orientation� C�y�, b�� � y�

b�
�4�

�Output-orientation� C�f�, b̂�� � f�

b̂
� : �40�

Now note that we must have y�Eb� because the latter is associated with equalities in Eq.
(3) which are replaced by inequalities in Eq. (1). As shown by FGL, we can use C(y�, b�) (or
C(f�, b�)) as a measure of congestion with the following properties. If C(y�, b�)=1 (or C(f�,
b�)=1), then input is not congested; alternatively, if C(y�, b�) < 1 (or C(f�, b�> 1), then
input congestion is present.
Note that the above congestion measure is strongly dependent on the orientation of DEA

models employed. We can interpret EQ. (4) by noting that 0E (1ÿC(y�, b�))E1 represents a
shortfall in output arising from going from Eqs. (1) to (3) because the latter is required to use
all inputs in the production indicated by b. This is not the case for Eq. (1), however, because
non-zero slack is allowed when this model is used. See the addendum to BCSW [2] for
numerical examples and discussions in the output-orientation case associated with C(f�, b�).
Turning to Eqs. (1) and (2), the proportional reduction in all inputs associated with y� in

Eq. (1) yields 0E(1ÿy�) E1 as a measure of technical ine�ciency. As noted in Cooper et al.
[8], this ine�ciency is to be distinguished from the non-zero slack secured from Eq. (2) because
these values will generally change the proportions in which inputs are used or in which outputs
are produced. This changes the mix and, as we will see, is later identi®ed as a further source of
ine�ciency.
Measures that can be used to summarize these mix components of ine�ciency are developed

and discussed in detail in Cooper et al. [8]. Later in the paper we will provide a measure of
congestion ine�ciency but, for the moment, we shall simply use condition (ii) in De®nition 3 to
identify additional sources of ine�ciency after y� has been determined via Eq. (1).
Returning to Eqs. (1) and (3), we may note that matters there proceed in an opposite

fashion in that only a measure of congestion has been provided. FGL provide the following
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model, as taken from [13], to identify sources and amounts of congestion in each input:

a� � min a

s:t:
Xn
j�1

ljx ij � axio i 2 A

Xn
j�1

ljx ijEaxio i 2 �A

Xn
j�1

ljyrjeyro r � 1, 2, . . . , s

Xn
j�1

lj � 1

lje0 j � 1, . . . , n

where AU{1,2, . . . , m } and A
-
is the complement. Using b� and a� for each AU{1,2, . . . , m },

if C(y�, b�) < 1, and y�=a�, as obtained from Eqs. (1) and (5), the components of the
subvectors associated with A

-
(={ivi ( A }) then identify sources and amounts of congestion.

The suggested route requires additional computation which can be onerous because it
involves obtaining solutions over all possible partitions of A (see FaÈ re et al. [13], p. 77).
Moreover, when done, still more may be required since the use of Eqs. (1) and (5) may not
identify the non-zero slack that may be present in some (but not all) alternate optima.
The route followed by FGL emphasizes e�ciency measurements with identi®cation of

sources and amounts of ine�ciencies to be undertaken as an additional job. We proceed in the
opposite direction, however, by emphasizing the identi®cation of ine�ciencies and their
components with measures to be derived thereafter. This will be done after we ®rst prove the
following theorem.

Theorem 1 (FGL). Input congestion as de®ned by Eq. (4) is not present in the performance of
DMUo if and only if an optimal solution is associated with referent frontier DMUs such that
non-zero input slack values are not detected in DEA model (1) (or (1 ')) or (2) and (2 ').

Proof. While we prove this theorem in the case of input-orientation DEA models, the proof for
output-orientation DEA models is the same. Recall that the only di�erence between Eqs. (1)
and (3) is that the input inequalities are changed to equalities. The referent frontier DMUs are
those in the basis when calculating the strong disposability model (1). If we have some referent
DMUs such that no non-zero input slack values are detected for DMUo, then we have, at
optimality,

(5)
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X
j2B

l�j x ij � y�xio for i � 1, . . . , m

where B represents the set of referent DMUs, B={ jvl�j > 0}. Obviously, l
�
j and y� are also

optimal for Eq. (3); therefore, y�=b�. Thus, no input congestion occurs. This completes the if
part.

To establish the only if part, we note that if no input congestion is identi®ed when an
optimum is associated with a basis B ' such thatX

j2B 0
l�j x ij � b�xio � y�xio

then this same optimum provides referent DMUs such that the input constraints are binding in
Eq. (1). Therefore, no non-zero input slack values are detected by reference to those DMUs in
B '. q

This theorem will help us maintain contact with what has been accomplished by FaÈ re et al.
[12,13] and their associates as we shall shortly see when we move toward one version of
additive models in which emphasis is centered on the slacks.

3. Relationship

The previous section indicates that there is a strong relationship between input slacks and
the FGL measure of input congestion. In fact, we have

Corollary 1. t�< 1 in an optimal solution for Eq. (3 ') is a necessary and su�cient condition
for positive slack to form part of an optimal solution to Eq. (1 ') when xio > 0, i = 1, . . . , m.

Proof. The condition is su�cient because t�< 1 implies

xio �
Xn
j�1

l�j x ij � sÿ�i

with sÿ�i > 0 for every i = 1, . . . , m. Hence, also, sÿ�i =(1ÿt�) xio. To show necessity, we
assume t�e1 for Eq. (3 ') for every i = 1, . . . , m. We then have

t�xio �
Xn
j�1

l�j x ijexio:

Thus, no positive slack can be added to obtain

xio �
Xn
j�1

l�j x ij � sÿ�i
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with sÿ�i > 0 for every i= 1, . . . , m. q

From the above result, we also have sÿ�i /xio=1ÿt�E1 which we shall shortly relate to a
new congestion measure. Here, however, we only note that this measure is dimensionless as is
t�. As shown in Corollary 1, above, a value of t�< 1 is necessary and su�cient for identifying
the presence of non-zero slacks in the corresponding solution to Eq. (1 '). An input reduction is
needed along with an output increase in order for congestion to be identi®ed. The condition
t�< 1 is therefore necessary but not su�cient for identi®cation of congestion. This can be seen
by virtue of the following theorem and an example provided below.

Theorem 2. The FGL ratio measure will not identify congestion, when present, only if the law
of variable proportions does not apply.

Proof. Assume that an optimal solution to Eq. (1 ') identi®es a point that is proportional to the
vector of inputs for DMUo. Let this solution have value f�. Also, let j $ So represent the
optimal basis associated with f�. By virtue of weak disposability as assumed for Eq. (3 ') by
FGL, we can represent this solution by

0Et� ÿ

X
j2So

xijl
�
j

x io
E1

sinceX
j2So

xijl
�
j Exio

for any i in Eq. (1 '). This also satis®es the conditions in Eq. (3 ') with y�=b�. This follows
because the conditions for Eq. (3 ') are more restrictive than the conditions for Eq. (1 '). Hence,
y�Eb� with equality achieved under the assumption of proportionality.

Further, when the law of variable proportions does not apply, we have

C�y�, b̂�� � y�

b̂
� � 1:

The FGL ratio measure will thus fail to identify the congestion that is present even if t�< 1.
q

We therefore turn to the additive model Ð as adapted from Cooper et al. [9] by Brockett et
al. [2] Ð in order to develop a DEA formulation to detect the input congestion which we
subsequently re®ne and extend.
The following model is employed by Brockett et al. [2] after solving Eqs. (1) and (2) (or Eqs.

(1 ') and (2 ')),
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Input-orientation

max
Xm
i�1

d�i

s:t:
Xn
j�1

ljx ij ÿ d�i � y�xio ÿ sÿ�i � x̂io i � 1, 2, . . . , m

Xn
j�1

ljyrj � yro � s��r � ŷro r � 1, 2, . . . , s �6�

Xn
j�1

lj � 1

lje0, sÿ�i edi:

or

Output-orientation

max
Xm
i�1

d�i

s:t:
Xn
j�1

ljx ij ÿ d�i � xio ÿ sÿ�i � x̂io i � 1, 2, . . . , m

Xn
j�1

ljyrj � f�yro � s��r � ŷro r � 1, 2, . . . , s �60�

Xn
j�1

lj � 1

lje0, sÿ�i edi:

Here, y� (f�) is obtained from Eqs. (1) ((1 ')) while sÿ�i and s+�r are obtained from Eqs. (2)
((2 ')). `Input-orientation' means that we use an input-oriented DEA model (1) in the ®rst-stage.
`Output-orientation' means that we use an output-oriented DEA model (1 ') in the ®rst-stage.
The amount of congestion in each input can then be determined by the di�erence between
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each pair of sÿ�i and d+�
i , where d+�

i are optimal values in Eqs. (6) ((6 ')). That is,

sci � sÿ�i ÿ d��i i � 1, 2, . . . , m: �7�

De®nition 4 (Congestion Slacks). sci de®ned in Eq. (7) are called input congestion slacks. It
should be noted that Eqs. (6) ((6 ')) may be modi®ed by altering its objective to

max
Xm
i�1

d�i
x io
�
Xm
i�1

d��i
x io

which is independent of the units of measure used for the various inputs. We also have

0Ed��i Esÿ�i Exio

so

0E

Xm
i�1

d��i
x io

m
E

Xm
i�1

sÿ�i
x io

m
E1

and therefore

0E

Xm
i�1

sc�i
x io

m
�

Xm
i�1

sÿ�i
x io

m
ÿ

Xm
i�1

d��i
x io

m
E1 �8�

This provides a measure that can be interpreted as the average proportion of congestion
present in the observed amounts of inputs used by DMUo.

From the above discussion, and Corollary 1, we immediately have

Theorem 3. The FGL approach will be equivalent to the BCSW approach in its ability to
identify congestion only when the law of variable proportions is present so that no optimum to
Eq. (1 ') will evaluate DMUo in a point with coordinates proportional to its inputs.

We now use Fig. 1, which is adapted from BCSW [2], to provide a two-input one-output
illustration. The solid lines connecting the points A, B, C, and D represent the unit isoquant
for y = 1 so the (x1,x2) coordinates are capable of producing y = 1. Output then rises linearly
to 10 units at R along the production surface and then falls back (also linearly) to the level of
y = 1 at G with coordinates (x1,x2)=(7.5,7.5). This is halfway between C and D on the solid
line segment connecting them.
To evaluate G's performance, we go back to Eq. (1 ') and obtain the following model:
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max f

s:t: 1f � 1lA � 1lB � 1lC � 1lD � 1lG � 10lR ÿ s�

7:5 � 5lA � 1lB � 5lC � 10lD � 7:5lG � 5lR � sÿ1

7:5 � 1lA � 5lB � 10lC � 5lD � 7:5lG � 5lR � sÿ2

1 � lA � lB � lC � lD � lG � lR:

With all variables constrained to be non-negative, the solution is l �R=1, sÿ�1 =sÿ�2 =2.5 which,
with all other variables zero, gives f�=10. Thus, G is being evaluated by R as indicated by
(7.5ÿsÿ�1 , 7.5ÿsÿ�2 )=(5,5) which are the coordinates for R in Fig. 1.
Turning to Eq. (3 ') for the second stage of the FGL evaluation, we write

max b̂

s:t: 1b̂ � 1lA � 1lB � 1lC � 1lD � 1lG � 10lR ÿ s�

Fig. 1. Isoquant diagram.
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7:5t � 5lA � 1lB � 5lC � 10lD � 7:5lG � 5lR

7:5t � 1lA � 5lB � 10lC � 5lD � 7:5lG � 5lR

1 � lA � lB � lC � lD � lG � lR:

With all variables constrained to be non-negative, the solution is t�=5/7.5 1 0.667, l �R=1 and
all other variables zero so that b�=10. Hence, the stage 1±stage 2 approach of FGL gives the
following ratio,

C�f�, b̂�� � f�

b̂
� �

10

10
� 1:

This solution fails to identify the congestion that is present in G's record as exhibited in Fig. 1.
Thus, in conformance with our theorem, the FGL ratio approach fails to identify congestion
when, as in this case, the law of variable proportions is not applicable.
The approach in BCSW [2], however, gives the correct result. This is seen by writing its

second-stage problem as follows:

max d�1 � d�2

s:t: 10 � 1lA � 1lB � 1lC � 1lD � 1lG � 10lR

5 � 5lA � 1lB � 5lC � 10lD � 7:5lG � 5lR ÿ d�1

5 � 1lA � 5lB � 10lC � 5lD � 7:5lG � 5lR ÿ d�2

1 � lA � lB � lC � lD � lG � lR

2:5ed�1

2:5ed�2

With all variables constrained to be non-negative, the solution is l �R=1 and all other variables
zero so that d+�

1 =d+�
2 =0. Thus, sci=sÿ�i =2.5 as obtained from Eq. (7), for i = 1,2 correctly

identi®es the congestion amounts in the inputs used by G.
As should now be seen, the equivalences that have been discovered between FGL and

BCSW hold only when the law of variable proportions is applicable. Thus, before FGL is used
to evaluate any DMUo, it is desirable to see whether this law is applicable. An easy way to do
this is as follows.
Note, ®rst, that congestion will be present in DMUo's performance only if there is a DMUR

which strictly dominates DMUo in both its inputs and outputs. For each such DMUR, one can
then examine whether the following relations hold for any i and l
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xio

xiR
� xlo

xlR
:

If there is one, then it is prudent to use BCSW. Unfortunately, the converse is not true. The
fact that these relations do not hold for any DMUR does not foreclose the possibility that such
a point will be generated from a non-negative combination of other DMUs.
To continue our study of relations with the approach of FGL, we proceed as follows. Let

x(sci ) be an input subvector in which its ith component corresponds to sci $0, i.e. x(sci ) is a
congesting subvector. Next, let XC be the set of all congesting subvectors obtained via Eq. (5).
We then have:

Theorem 4. x�sci �2 X C. Furthermore, if Eq. (6) (or (6 ')) yields a unique optimal solution, then
X C � fx�sci �g.

Proof. We prove this theorem on the basis of Eq. (6). Let A={ivsci=0} and A
-
={ivsci $0}. Then

the constraints of Eq. (6) becomeXn
j�1

ljx ij � y�xio i 2 A

Xn
j�1

ljx ijEy�xio i 2 �A

Xn
j�1

ljyrj � yro � s��r r � 1, 2, . . . , s �9�

Xn
j�1

lj � 1

ljr0, sÿ�i rdi:

where y� is the optimal value to Eq. (1). This implies that y� is a feasible solution to Eq. (5).
Thus, a�Ey�, where a� is the optimal value to (5) associated with A and A

-
. On the other

hand, any optimal solution to (5) is a feasible solution (1); therefore, a�ey�. Thus, y�=a�

indicating that the input subvector associated with A
-
, x(sci ), is a source of congestion.

Therefore, x(sci ) $ XC.

Moreover, if Eq. (6) yields a unique optimal solution, then the solution in Eq. (9) is also
unique. This means that y�=a� does not hold for other input subvectors. Thus, XC={x(sci )}.
q

Theorem 4 indicates that under the condition of uniqueness, congestion will occur in the
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BCSW approach if and only if it appears in the FGL formulation as well. However, the BCSW
approach identi®es technical or mix ine�ciencies and distinguishes these from congestion
components via Eq. (7).
We may observe that the use of Eq. (5) may result in di�erent congestion factors because of

possible multiple optimal solutions. The above theorem indicates that the results from Eq. (6)
then yield one of the congesting subvectors obtained from Eq. (5). As a result, the procedure
by FGL for detecting the factors responsible for congestion may be replaced by model Eq. (6).
One can thus more easily ®nd and identify congestion and its sources without having to
conduct a series of solutions as required for Eq. (5).
Next, we recall that all DMU evaluations can be classi®ed into four groups, E, E ', F, N,

(Charnes et al. [4]): (i) set E contains all extreme e�cient DMUs, (ii) set E ' contains e�cient
DMUs that can be expressed as convex combinations of DMUs in set E; (iii) set F contains
weakly e�cient DMUs that are frontier DMUs but have non-zero DEA slacks, and (iv) set N
contains DMUs not on the frontier.
Cooper et al. [9] refer to F as the `extended frontier' in order to distinguish it from the

`e�ciency frontier'. The presence of F can create problems because of the existence of weakly
e�cient DMUs consisting of frontier points with non-zero slacks that must be reduced to zero
to attain full DEA e�ciency. However, if the DEA frontier is composed solely of extreme
e�cient DMUs, as described in (i) above, we then have the following result.

Theorem 5. If the observed values on the e�cient frontier are composed only of extreme e�cient
DMUs, then congestion can occur if and only if non-zero DEA slack values are detected in Eq.
(2) (or (2 ')). Furthermore, the sources of congestion can then only be found in these non-zero
DEA slack values.

Proof. The proof is obvious from the results stated in theorem 1. q

This theorem can be important in real world applications, since the frontiers (de®ned by the
®rst three groups of DMUs) in most real world data sets contain only the extreme e�cient
DMUs. Consequently, the input congestion and its amount can simply be represented by the
DEA slacks de®ned in Eqs. (2) (or (2 ')) (see Ray et al. [16]).
To illustrate the use of theorem 5, we here revisit the Chinese data set analysed by BCSW in

a study of congestion in Chinese production before and after the 1978 economic reforms.2 In
order to see whether the frontier of this data set consists of only extreme e�cient DMUs, we
employ the following super-e�ciency DEA model3 in which the DMU under evaluation is
excluded from the reference set to classify the data set into di�erent e�ciency groups:

~y
� � min ~y

2 See Cooper et al. [10] for a complete discussion of this data set.
3 This is due to Andersen and Petersen [1] who use it to rank DMUs. It has also been used for sensitivity analysis

[17,20]. For a complete discussion of this type od DEA model and its uses, see [18].
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s:t:
Xn

j6�o, j�1
ljxrjE~yxio i � 1, 2, . . . , m

Xn
j 6�o, j�1

ljyrjryro r � 1, 2, . . . , s

Xn
j 6�o, j�1

lj � 1

ljr0 j 6� o, j � 1, . . . , n:

Thrall [19] shows that (i) if ~y
�
> 1 or Eq. (10) is infeasible, then DMUo belongs to E; (ii) if

~y
�
=1, then DMUo belongs to the union of E ' and F; and (iii) if ~y

�
< 1, then DMUo belongs

to N. We can illustrate by applying Thrall's theorem to the data on Chinese production in
Cooper et al. [10] for textiles, chemicals and metallurgies during the period 1966±1988. Table 1

(10)

Table 1
Super-e�ciency scores in the textile, chemical, and metallurgy industries (1966±1988)

Year Textile Chemical Metallurgy

1966 1.03374 1.03732 1.03681
1967 1.06422 1.03020 0.97543

1968 1.00017 1.03328 0.91046
1969 1.02344 1.05570 0.87747
1970 1.03198 1.01878 0.88253

1971 1.01987 0.99468 0.97405
1972 0.98439 0.98099 1.13660
1973 0.95807 0.97602 1.01185
1974 0.94559 0.98392 1.00539

1975 0.93955 0.98788 1.03259
1976 0.91511 0.98359 0.92188
1977 0.89158 0.95898 0.90363

1978 1.01286 1.06580 1.03261
1979 1.00458 0.99094 1.02684
1980 1.03478 0.94167 0.99712

1981 1.28058 0.95448 0.97904
1982 0.83021 1.00130 0.99712
1983 0.84044 1.00088 1.02660

1984 0.97463 1.00984 0.99723
1985 1.03691 1.00237 0.94756
1986 0.95112 1.02410 1.00147
1987 1.00174 0.98796 1.01637

1988 Infeasible Infeasible Infeasible
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gives the super-e�ciency scores in these industries, where, as can be seen, no DMUs are in
E ' [F, with ~y

�
=1. The only points that occur are in N, with ~y

�
< 1, or in E, with ~y

�
> 1 or

infeasible. Therefore, the congestion amounts can be directly obtained as slacks from Eq. (1).
This is con®rmed by the results in BCSW [2] where the labor congestion amount is equal to
the corresponding labor slack value in each industry.
Finally, one may notice that results from the congestion measures used may depend on the

orientation of the DEA model used. We illustrate this with Fig. 2, which is adapted from
BCSW [2] with y representing the single output amount produced by each DMU and x
representing the single input used. Only the line segment connecting A and B is e�cient. C is
not e�cient because it has one unit of slack in its input. D, another point on the frontier, is
congested because its input amount x= 5 is associated with a reduction of output from y = 2,
at C or B, to a value of y = 1 at D.
The performance of DMU associated with G also exhibits congestion by the same output

reduction as D, but with a smaller value for its input congestion. The latter needs to be
reduced from x= 4 to x= 3 in order to achieve coincidence with the corresponding input
amount in C. However, if an input-oriented DEA model is used, as in Eq. (1), for instance, the
following solution is obtained for the evaluation of DMUG: l

�
A=2/3, l �B=1/3, y�=1/3 and all

zero slacks. Yet, as observed, production is congested at this point even though C(y�, b�)=1 as
indicated by the FGL measure.4 Also, if we use an input-oriented BCSW approach (6), we will
have sc=sÿ�ÿd+�=0ÿ0=0, indicating no congestion. However, if we turn to the output-

Fig. 2. Illustration of congestion.

4 The output-oriented FGL ratio measure (Eq. (4 ')) also fails to identify congestion at G (see Appendex).
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oriented BCSW approach as given in Eqs. (6 ') and (7), we obtain sc=sÿ�ÿd+�=2ÿ1=1, as
the congesting amount of input. This is a correct characterization.

4. A uni®ed additive model approach

We now provide an approach in which additive models are used for both congestion and
ine�ciency analyses. First, we recall that Eq. (2) may be interpreted as a version of the
additive model as ®rst provided in Charnes et al. [5]. In fact, setting y�=1 in Eq. (2) produces
the ordinary form of the additive model. Following BCSW [2], we would employ Eqs. (1) and
(2) followed by Eq. (7) to obtain an extension of both slack (=mix or technical ine�ciency)
and congestion via Eq. (8). This, however, is not the end of the trail. We can, in fact,
replace this use of a mixture of models with a uni®ed approach based entirely on the additive
model.
To see how this can be done, we start with the following model

max

Xs
r�1

s�r
yro

s
� e

Xm
i�1

sÿi
x io

m

s:t:
Xn
j�1

ljx ij � sÿi � xio i � 1, 2, . . . , m

Xn
j�1

ljyrj ÿ s�r � yro r � 1, 2, . . . , s �11�

Xn
j�1

lj � 1

lj, sÿi , s�r e0

where e > 0 is a non-Archimedean element that is smaller than any positive real number and
remains so no matter how large the value of the real number

Pm
i�1

sÿi
x io
:

The formulation in Eq. (11) accords preemptive priority to maximizing
Ps

r�1
s�r
yro
. This

modi®cation of the usual additive model is employed because the latter seeks to maximize the
distance to the e�cient frontier in a manner that maximizes inputs and outputs simultaneously
in the sense of a vector optimization. Here, however, we mean to accord priority to output
maximization after which we try to identify all input congestion that may be present.
This is done as follows. First, we use the results from Eq. (11) to form the following model

in which we normalize the input slacks:
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max

Xm
i�1

s�i
x io

m

s:t:
Xn
j�1

ljx ij � sÿi � xio i � 1, 2, . . . , m

Xn
j�1

ljyrj � ŷro r � 1, 2, . . . , s �12�

Xn
j�1

lj � 1

lj, sÿi , e0

where yÃro=yro+s+�r , and s+�r represent the output slacks obtained from Eq. (11).
This yields a new set of maximal input slacks consistent with the thus adjusted outputs. We

then attempt to `back out' the maximal inputs which are interpreted as technical or mix
ine�ciencies of the ordinary variety. This backing out is accomplished by means of the
following modi®cation of Eq. (6):

max

Xm
i�1

d�i
x io

m

s:t:
Xn
j�1

ljx ij ÿ d�i � x̂io i � 1, 2, . . . , m

Xn
j�1

ljyrj � ŷro r � 1, 2, . . . , s �13�

Xn
j�1

lj � 1

lj, dÿi e0

where xÃio=xioÿsÿ�i and sÿ�i are the optimal slacks obtained in the second stage optimization
implied by Eq. (11).
This accounts for the congestion (as well as the technical and mix ine�ciency) components
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of each input. The measures to be used are in the objectives. Note that we have separated the
measures of output and input ine�ciencies into two averages, in part because we cannot
guarantee a bound of unity for the output proportions.
Recourse may be had to the measures described in Cooper et al. [8] when this is desired.

Here, however, we use these outputs only in the form of a `driving function` to obtain the
input congestion measures of interest.
This brings us back to Eq. (7) for determining sci , the amount of congestion in input i, as

determined by subtracting d+�
i , the technical or mix ine�ciencies that do not reduce any

output.
To provide a rationale, we need only observe that the conditions8>>>>><>>>>>:

x̂io �
Xn
j�1

xijlj i � 1, . . . , m

ŷro �
Xn
j�1

yrjlj r � 1, . . . , s

�14�

are associated with the maximization of output and maximization of input slacks, respectively,
in Eq. (11). Hence, forcing a positive value of d+�

i into Eq. (14) to alter xÃio to xÃio+d+�
i would

require replacing the equalities with inequalities to produce a new solution with

x̂io <
Xn
j�1

xijlj,

for some i and

ŷro >
Xn
j�1

yrjlj

for some r.
In many cases, the output reduction resulting from congestion will be apparent from

ine�ciency. For a formal development that will handle all cases, however, we now replace Eq.
(12) with

max

Xs
r�1

dÿr
yro

s

s:t:
Xn
j�1

ljx ij � sÿi � xio i � 1, 2, . . . , m
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Xn
j�1

ljyrj � dÿr � ŷro r � 1, 2, . . . , s �15�

Xn
j�1

lj � 1

lj, dÿr e0

where yÃro is de®ned as in Eq. (12) and the xio are original data as in the inputs for Eq. (11).
When the optimal solution for Eq. (11) is unique, the solution to Eq. (15) will simply
reproduce the original data via yÃroÿdÿ�r =yro. When not unique, however, other possibilities
may be present.
Finally, we compare the FGL approach with our own. Both input-orientation and output-

orientation approaches are employed. Tables 2, 3 and 4 report the results on the three Chinese
industries studied by BCSW [2]. In the FGL approach, the congestion is represented by

Table 2
Congestion in textile industry

Year
FGL

Pm
i�1

sci
x io

�
m

Input-orientation Output-orientation Input-orientation Output-orientation

1966 0 0 0 0
1967 0 0 0 0

1968 0 0 0 0
1969 0 0 0 0
1970 0 0 0 0

1971 0 0 0 0
1972 e 0.01791 0.02101 0.02101
1973 e 0.02549 0.03739 0.03701
1974 0.01295 0.02230 0.01409 0.03357

1975 0.00048 0.01307 0.00106 0.02183
1976 0.00747 0.03500 0.00809 0.03793
1977 0.02239 0.09763 0.02186 0.06104

1978 0 0 0 0
1979 0 0 0 0
1980 0 0 0 0

1981 0 0 0 0
1982 e 0.03533 0.00715 0.06157
1983 e 0.03793 0.00611 0.06562
1984 0 0.00955 0 0.02789

1985 0 0 0 0
1986 0.02649 0.01635 0.00930 0.02153
1987 0 0 0 0

1988 0 0 0 0

e is a very small number.
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1ÿC(y�, b�) (input-orientation) and C(f�, b�) ÿ1 (output-orientation). In our approach, `input-
orientation' means that we use an input-oriented DEA model ®rst and then back out the
congestion; `output-orientation` means that we use the uni®ed additive approach.
It can be seen that in nine cases (six input-orientation and three output-orientation), the

input congestion is a very small number (close to zero) in FGL measure, whereas our approach
shows that, on average, there is substantial input congestion amounts. Also, note that di�erent
orientations lead to di�erent results on input congestion. This indicates that the focus on an
empirical study, e.g. measuring output losses, should be carefully set. Finally, note that the
congestion results under output-orientation are consistent with those in BCSW.

5. Conclusions

This paper establishes an equivalence between the congestion measures used by Brockett et
al. [2] and FaÈ re et al. (FGL) [12,13]. FGL provides a measure of output loss estimated in the
manner described in the addendum to Brockett et al. [2] whereas the approach used in our

Table 3
Congestion in chemical industry

Year
FGL

Pm
i�1

sci
x io

�
m

Input-orientation Output-orientation Input-orientation Output-orientation

1966 0 0 0 0

1967 0 0 0 0
1968 0 0 0 0
1969 0 0 0 0

1970 0 0 0 0
1971 0 0 0 0
1972 e 0.00422 0.02120 0.01738
1973 e 0.00142 0.00146 0.00370

1974 0 0 0 0
1975 0 0 0 0
1976 0.00578 0.01661 0.07463 0.05690

1977 0.03170 0.04258 0.11247 0.07469
1978 0 0 0 0
1979 0 0 0 0

1980 0.05833 0.03198 0.01376 0.02647
1981 0.02004 e 0.00576 0.06506
1982 0 0 0 0

1983 0 0 0 0
1984 0 0 0 0
1985 0 0 0 0
1986 0 0 0 0

1987 0.01204 0.00583 0.00114 0.00642
1988 0 0 0 0

e is a very small number.
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paper identi®es all the congesting (and other) amounts and provides measures of congestion,
technical (mix) and total (=technical+congestion) ine�ciency as well.
Also, as noted in Brockett et al. [2], the FGL measure only gives a greatest lower bound for

the case of multiple outputs, whereas our measure, covers any ®nite number of inputs.
Here, we have focused on the aspects of production as represented in technical, mix and

congestion ine�ciencies. Other aspects of ine�ciencies can be handled by associating prices
and costs with output and input slacks, as is done in the appendix to Cooper et al. [8]. Hence,
nothing appears to be lost and much appears to be gained by using varieties and extensions of
the additive model, as is done here, to obtain a uni®ed approach to all these aspects of
ine�ciencies.
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Table 4
Congestion in metallurgy industry

Year
FGL

Pm
i�1

sci
x io

�
m

Input-orientation Output-orientation Input-orientation Output-orientation

1966 0 0 0 0

1967 0.00161 0 0.00407 0
1968 0.00496 0 0.01261 0
1969 0.01849 0 0.03587 0

1970 0.11747 0.42124 0.08125 0.08864
1971 0 0 0 0
1972 0 0 0 0
1973 0 e 0 0.04284

1974 0 0 0 0
1975 0 0 0 0
1976 0 e 0 0.01873

1977 0 0.01947 0 0.04424
1978 0 0 0 0
1979 0 0 0 0

1980 0 0 0 0
1981 0 0 0 0
1982 0 0 0 0

1983 0 0 0 0
1984 0 0 0 0
1985 0 0 0 0
1986 0 0 0 0

1987 0 0 0 0
1988 0 0 0 0

e is a very small number.
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Appendix A. FGL output-oriented congestion ratio

Consider the FGL output-oriented congestion ratio Eq. (4 ') for point G in Fig. 2. We use
Eq. (1 ') to obtain the following alternate optima in the ®rst stage evaluation for the
performance of G.

f� � 2, l�B � 1, sÿ� � 2

or, alternatively

f� � 2, l�C � 1, sÿ� � 1:

A similar situation applies at the second stage, i.e., model Eq. (3 '), since

b̂
� � 2, l�B � 1, t� � 1=2

or, alternatively

b̂
� � 2, l�C � 1, t� � 3=4:

However, the combination represented by

C�f�, b̂�� � f�

b̂
� �

2

2
� 1

fails to identify G's performance with congestion. Thus, although the values of f�=b�=2
correctly identify the output that should have been achieved, the ratio test suggested by FGL
fails in this case. One reason for the failure is the inapplicability of the `law of variable
proportions', which cannot be applied to the single input-single output case. Another
shortcoming is the inability to distinguish between points like B and C, as shown by the above
alternate optima, because of recourse to free disposal assumptions. To see that this is so, we
turn to the fact that our approach identi®es the ®rst of the stage-one solutions as uniquely
optimal because its slack value is maximal. Stage-two then decomposes these two units of total
slack into a congesting component of sc=1 so that the residual (also=1) represents the
technical (or mix)5 ine�ciency of one unit involved in moving from point C to point B.
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